姜黄素
癌症研究
程序性细胞死亡
外周血单个核细胞
乙酰化
细胞生长
免疫系统
癌细胞
细胞
化学
细胞凋亡
体外
免疫学
癌症
生物
医学
内科学
生物化学
基因
作者
Lei Guo,Hongbo Li,Tianli Fan,Yanli Ma,Li Wang
出处
期刊:Life Sciences
[Elsevier]
日期:2021-03-19
卷期号:279: 119359-119359
被引量:36
标识
DOI:10.1016/j.lfs.2021.119359
摘要
Hepatocellular carcinoma (HCC) ranks near the top in the global list of malignancies causing cancer-related death. Recently, combination therapy has gained popularity in treating this cancer. We tried to investigate the efficacy of combined treatment with curcumin and anti-programmed cell death-1 (anti-PD-1) in HCC. Hep3B cells were treated with different concentrations of curcumin, followed by determination of Hep3B cell proliferation and programmed cell death ligand-1 (PD-L1) expression. Then, Hep3B cells were co-cultured with peripheral blood mononuclear cells (PBMCs), after which the Hep3B cell growth and immune activity were detected following treatment with curcumin and/or anti-PD-1. Besides, we investigated the effect of transforming growth factor beta 1 (TGF-β1) on lymphocyte activation and the interaction between E1A binding protein P300 (P300), histone acetylation, TGF-β1, and thrombin. Additionally, the synergistic role of curcumin and anti-PD-1 in mouse models of HCC was studied. Curcumin retarded Hep3B cell growth and reduced surface PD-L1 expression in Hep3B cells. After co-culture of Hep3B cells and PBMCs, curcumin had a synergistic effect with anti-PD-1 to slow Hep3B cell proliferation, activate lymphocytes, inhibit immune evasion, and down-regulate TGF-β1 expression. Functionally, curcumin inhibited thrombin to reduce P300-induced histone acetylation in the TGF-β1 promoter region, and anti-PD-1 suppressed binding of PD-1 and PD-L1 to promote immune activity; the combination of the two showed better in vitro anti-cancer effects. In vivo, curcumin combined with anti-PD-1 also lowered HCC growth rate and improved the tumor microenvironment. In conclusion, the combination of curcumin and anti-PD-1 is synergistically effective in the treatment of HCC treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI