亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning Approaches for Impulse Noise Mitigation and Classification in NOMA-Based Systems

计算机科学 诺玛 脉冲噪声 噪音(视频) 人工智能 脉冲(物理) 模式识别(心理学) 语音识别 电信 电信线路 物理 量子力学 图像(数学) 像素
作者
Muhammad Mustafa Hussain,Hina Shakir,Haroon Rasheed
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 143836-143846 被引量:2
标识
DOI:10.1109/access.2021.3121533
摘要

The new emerging networks such as smart grids, smart homes and Internet of Things have enabled user accessibility across the globe and employ non-orthogonal multiple access (NOMA) scheme to accommodate huge number of connected devices. These devices which include smart meters, sensors and actuators etc. suffer from impulse noise (IN) while operating with power systems. Furthermore, NOMA scheme provides power domain multiple access (PDMA) which is found to be susceptible to IN. Based on the aforementioned IN intervention and its degrading effect on communication applications, novel mechanisms are desired to mitigate and classify the IN induced in the received signal. In this research work, novel IN mitigation and classification techniques are presented using deep learning methods for NOMA-based communication systems. The IN detection is performed by first identifying the IN occurrences using a deep neural network (DNN) which learns statistical traits of noisy samples followed by removal of harmful effect of IN in the detected occurrences. Using the proposed DNN, higher bit error rates (BER) were achieved when compared with the existing IN detection methods. The proposed method was further validated for high and low IN, and weak and strong IN occurrence probabilities. Moreover, another deep learning network is proposed in this research work to effectively distinguish between high IN and low IN in the noise contaminated NOMA symbols which can help improve the performance of IN detection models. Both of the deep learning methods proposed in this study show strong potential to address IN problem faced by the NOMA scheme.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
joker完成签到 ,获得积分10
3秒前
4秒前
西溪完成签到,获得积分10
10秒前
16秒前
17秒前
搜集达人应助科研通管家采纳,获得10
21秒前
NagatoYuki完成签到,获得积分10
21秒前
科研通AI2S应助科研通管家采纳,获得30
21秒前
樊樊发布了新的文献求助10
22秒前
24秒前
xiyin完成签到,获得积分10
26秒前
27秒前
科研通AI2S应助Evy采纳,获得10
27秒前
39秒前
44秒前
白华苍松发布了新的文献求助10
44秒前
46秒前
或习发布了新的文献求助10
48秒前
852应助或习采纳,获得10
53秒前
1分钟前
1分钟前
1分钟前
1分钟前
可爱的函函应助科研小白采纳,获得10
1分钟前
小鱼爱吃肉应助加菲丰丰采纳,获得10
1分钟前
学渣小林发布了新的文献求助10
1分钟前
复杂宇宙发布了新的文献求助10
1分钟前
脑洞疼应助学渣小林采纳,获得10
1分钟前
无花果应助复杂宇宙采纳,获得10
1分钟前
学渣小林完成签到,获得积分10
1分钟前
1分钟前
xiaowu应助白华苍松采纳,获得10
1分钟前
1分钟前
1分钟前
wangqi发布了新的文献求助10
1分钟前
樊樊完成签到 ,获得积分10
1分钟前
bkagyin应助wangqi采纳,获得10
1分钟前
许结朱陈完成签到 ,获得积分10
1分钟前
1分钟前
andrele发布了新的文献求助10
1分钟前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330358
求助须知:如何正确求助?哪些是违规求助? 2959988
关于积分的说明 8597988
捐赠科研通 2638593
什么是DOI,文献DOI怎么找? 1444464
科研通“疑难数据库(出版商)”最低求助积分说明 669106
邀请新用户注册赠送积分活动 656727