Design of Superhydrophobic Surfaces for Stable Perovskite Solar Cells with Reducing Lead Leakage

材料科学 卤化物 钙钛矿(结构) 纳米技术 单层 金属 化学工程 泄漏(经济) 无机化学 化学 工程类 宏观经济学 经济 冶金
作者
Hua Zhang,Kang Li,Man Sun,Fanglin Wang,Huan Wang,Alex K.‐Y. Jen
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:11 (41) 被引量:85
标识
DOI:10.1002/aenm.202102281
摘要

Abstract Environment‐related degradation and lead leakage in perovskite solar cells have posed a big challenge for their commercialization. Here, design of superhydrophobic surfaces is demonstrated as an effective strategy toward these issues, in which thiol‐functionalized perfluoroalkyl molecules are employed to chemically modify the lead halide perovskite film and metal electrode via a vapor‐assisted self‐assembly process. Due to the van der Waals forces, the generation of self‐assembly monolayer prefers to pack in a dense way, resulting in the formation of a closest‐packed, crystalline‐like molecular array. This dense array is endowed with a low‐surface‐energy chemistry that can not only enhance the water and oxygen resistance of the completed device but also reduce the defect density on the perovskite surfaces. These merits eventually boost the efficiency of inverted perovskite solar cells up to 21.79% along with a substantially improved long‐term stability. More importantly, the thiol‐functionalized superhydrophobic array can immobilize most of the undercoordinated lead ions on the perovskite surfaces by metal‐thiol coordination effect, which results in suppressing the lead leakage from the water‐soluble lead halide perovskites. Therefore, an avenue is pointed out here to fabricate stable perovskite solar cells with reducing lead leakage, representing a substantial step toward practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迟大猫应助xzn1123采纳,获得30
1秒前
1秒前
1秒前
科研通AI5应助李李采纳,获得50
2秒前
祖f完成签到,获得积分10
2秒前
阿莫西林胶囊完成签到,获得积分10
3秒前
jason完成签到,获得积分10
3秒前
3秒前
科研通AI5应助吴岳采纳,获得10
4秒前
Sheila发布了新的文献求助10
4秒前
甜美的海瑶完成签到,获得积分10
5秒前
5秒前
5秒前
张牧之完成签到 ,获得积分10
5秒前
yuyukeke完成签到,获得积分10
6秒前
6秒前
沉默的婴完成签到 ,获得积分10
6秒前
7秒前
8秒前
Dita完成签到,获得积分10
8秒前
惠惠发布了新的文献求助10
8秒前
脑洞疼应助lan采纳,获得10
9秒前
10秒前
成就的笑南完成签到 ,获得积分10
11秒前
偷狗的小月亮完成签到,获得积分10
11秒前
爱吃泡芙完成签到,获得积分10
11秒前
ysl完成签到,获得积分10
12秒前
12秒前
爆米花应助pipge采纳,获得30
12秒前
彻底完成签到,获得积分10
13秒前
14秒前
韋晴完成签到,获得积分10
15秒前
15秒前
17秒前
领导范儿应助wenjian采纳,获得10
17秒前
17秒前
奇拉维特完成签到 ,获得积分10
17秒前
18秒前
Apple发布了新的文献求助10
18秒前
wtg完成签到,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808