An exact algorithm for two-dimensional vector packing problem with volumetric weight and general costs

数学优化 算法 计算机科学 数学
作者
Ting Wang,Qian Hu,Andrew Lim
出处
期刊:European Journal of Operational Research [Elsevier]
卷期号:300 (1): 20-34 被引量:1
标识
DOI:10.1016/j.ejor.2021.10.011
摘要

• Study a vector packing problem with volumetric weight and general costs. • Propose an exact algorithm with column generation and subset-row inequalities. • Develop an efficient label-setting algorithm with a strong dominance rule. • Outperform an existing exact algorithm for the problem without volumetric weight. • Investigate the impact of volumetric weight on packing solutions. The volumetric weight of a package has become an essential factor in calculating the delivery cost of shipments in the international logistics market. In this work, we extend the two-dimensional vector packing problem by considering a more realistic cost structure, which is a general function of volumetric weight. The problem is to pack a set of different items into some identical bins without violating weight limits and volume capacities so that the total delivery cost is minimized. We develop an exact approach based on a branch-and-price algorithm and subset-row inequalities for the problem. To efficiently solve the pricing problem in column generation, a label-setting algorithm with an effective label dominance rule and a bounding procedure is presented. A stronger label dominance rule is derived for the case where the cost function is convex. The computational results show that the exact method is effective in solving the various test instances of the problem. If the volumetric weight is not considered, the exact method can be adapted to solve the two-dimensional vector packing problem with piecewise linear cost function and outperformed the existing exact algorithm by computing 27 optimal solutions for previously open instances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助balzacsun采纳,获得10
刚刚
轻松的悟空完成签到 ,获得积分10
2秒前
susan完成签到,获得积分10
3秒前
0029完成签到,获得积分10
5秒前
Aki完成签到,获得积分10
5秒前
5秒前
6秒前
7秒前
8秒前
LXR完成签到,获得积分10
10秒前
thchiang发布了新的文献求助10
11秒前
李健应助北城采纳,获得10
11秒前
WDK发布了新的文献求助10
11秒前
12秒前
轻松的贞发布了新的文献求助10
12秒前
医学生Mavis完成签到,获得积分10
14秒前
nextconnie完成签到,获得积分10
14秒前
汉堡包应助yyj采纳,获得10
15秒前
zqh740发布了新的文献求助30
16秒前
17秒前
NexusExplorer应助pharmstudent采纳,获得10
18秒前
熊遇蜜完成签到,获得积分10
20秒前
panzer完成签到,获得积分10
21秒前
22秒前
lyt发布了新的文献求助10
23秒前
六月毕业关注了科研通微信公众号
24秒前
petrichor应助程程采纳,获得10
25秒前
圆儿完成签到 ,获得积分10
25秒前
潇洒的灵萱完成签到,获得积分10
25秒前
25秒前
25秒前
Toooo完成签到,获得积分10
26秒前
zqh740完成签到,获得积分10
26秒前
科研通AI5应助thchiang采纳,获得10
26秒前
lizzzzzz完成签到,获得积分10
27秒前
yyj发布了新的文献求助10
27秒前
请和我吃饭完成签到,获得积分10
28秒前
北城发布了新的文献求助10
29秒前
勤恳冰淇淋完成签到 ,获得积分10
30秒前
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824