Decoding of semantic categories of imagined concepts of animals and tools in fNIRS

计算机科学 脑-机接口 解码方法 任务(项目管理) 功能磁共振成像 神经解码 模式 对象(语法) 接口(物质) 刺激形态 大脑活动与冥想 脑电图 人工智能 心理学 语音识别 认知心理学 感觉系统 社会学 气泡 经济 神经科学 并行计算 管理 最大气泡压力法 电信 社会科学 精神科
作者
Milan Rybář,Riccardo Poli,Ian Daly
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:18 (4): 046035-046035 被引量:3
标识
DOI:10.1088/1741-2552/abf2e5
摘要

Abstract Objective. Semantic decoding refers to the identification of semantic concepts from recordings of an individual’s brain activity. It has been previously reported in functional magnetic resonance imaging and electroencephalography. We investigate whether semantic decoding is possible with functional near-infrared spectroscopy (fNIRS). Specifically, we attempt to differentiate between the semantic categories of animals and tools. We also identify suitable mental tasks for potential brain–computer interface (BCI) applications. Approach. We explore the feasibility of a silent naming task, for the first time in fNIRS, and propose three novel intuitive mental tasks based on imagining concepts using three sensory modalities: visual, auditory, and tactile. Participants are asked to visualize an object in their minds, imagine the sounds made by the object, and imagine the feeling of touching the object. A general linear model is used to extract hemodynamic responses that are then classified via logistic regression in a univariate and multivariate manner. Main results. We successfully classify all tasks with mean accuracies of 76.2% for the silent naming task, 80.9% for the visual imagery task, 72.8% for the auditory imagery task, and 70.4% for the tactile imagery task. Furthermore, we show that consistent neural representations of semantic categories exist by applying classifiers across tasks. Significance. These findings show that semantic decoding is possible in fNIRS. The study is the first step toward the use of semantic decoding for intuitive BCI applications for communication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fairy完成签到,获得积分10
刚刚
刚刚
ljy发布了新的文献求助10
1秒前
Damy完成签到,获得积分10
2秒前
nk完成签到 ,获得积分10
2秒前
2秒前
NaNa发布了新的文献求助10
2秒前
丘比特应助赵先森采纳,获得10
3秒前
3秒前
小李完成签到,获得积分10
3秒前
Morch2021发布了新的文献求助100
3秒前
锦鲤完成签到 ,获得积分10
4秒前
qzp98发布了新的文献求助10
4秒前
姜姜姜应助森ok采纳,获得10
4秒前
Misaki完成签到,获得积分0
5秒前
淡定如之发布了新的文献求助10
5秒前
6秒前
AV发布了新的文献求助10
6秒前
exile完成签到,获得积分10
7秒前
阿童慕发布了新的文献求助10
7秒前
7秒前
酷波er应助孙文杰采纳,获得10
7秒前
科研通AI2S应助wuwen采纳,获得10
7秒前
zasideler完成签到 ,获得积分10
7秒前
无问发布了新的文献求助10
8秒前
36456657应助悦耳易采纳,获得10
9秒前
wu完成签到,获得积分10
9秒前
9秒前
one完成签到 ,获得积分10
11秒前
Fazie完成签到 ,获得积分10
12秒前
12秒前
DONG完成签到 ,获得积分10
12秒前
QQ完成签到,获得积分10
12秒前
阿欣完成签到,获得积分10
12秒前
13秒前
robust发布了新的文献求助10
13秒前
顺顺尼完成签到,获得积分10
13秒前
13秒前
13秒前
WM应助俊逸兰谷采纳,获得30
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307880
求助须知:如何正确求助?哪些是违规求助? 2941451
关于积分的说明 8503412
捐赠科研通 2615951
什么是DOI,文献DOI怎么找? 1429290
科研通“疑难数据库(出版商)”最低求助积分说明 663712
邀请新用户注册赠送积分活动 648671