胶束
活性氧
硫醚
体内
生物物理学
化学
临界胶束浓度
材料科学
细胞内
有机化学
生物化学
水溶液
生物
生物技术
作者
Caidie Xu,Renlu Han,Hongxin Liu,Yabin Zhu,Jianfeng Zhang,Long Xu
标识
DOI:10.1002/slct.202100480
摘要
Abstract Lots of efforts have been devoted to enhancing the antitumor efficacy of reactive oxygen species (ROS)‐responsive nanoscale drug delivery systems. Here, a ROS‐responsive amphiphilic polymer (mPEG‐b‐poly(thioacetal‐thioether), P2) with property of generation and self‐sustained high level of ROS, and a control material mPEG‐b‐poly(ester‐thioether) (P1) were constructed and characterized by proton nuclear magnetic resonance ( 1 H NMR). The two polymers could self‐assemble into micelles and the doxorubicin loading content of P1 and P2 micelles were 13.08 % and 13.51 %, respectively. The two polymers could self‐assemble into micelles and exhibit good DOX loading capacity. ROS‐responsiveness of P1 and P2 micelles was investigated by 1 H NMR, dynamic light scattering (DLS), and scanning electron microscope (SEM). The results of in vitro ROS detection indicated that P2 micelles could ROS‐responsive release of cinnamaldehyde, and promote intracellular generation of ROS and maintain high level of ROS. DOX/P1 micelle shown comparable in vitro antitumor efficacy with DOX/P2 micelle, and a slightly lower IC50 value was due to DOX/P1 micelle has faster cell internalization, poorer micelle stability and integrality. Considering the stability of the nanoparticle circulation in vivo , the DOX/P2 micelle containing both thioether and thioacetal would be more suitable and could show better in vivo antitumor efficacy.
科研通智能强力驱动
Strongly Powered by AbleSci AI