记忆电阻器
材料科学
神经形态工程学
电导
高熵合金
纳米技术
光电子学
电阻随机存取存储器
氧化物
电子工程
电压
微观结构
冶金
凝聚态物理
计算机科学
电气工程
物理
人工神经网络
工程类
机器学习
作者
Minhyung Ahn,Yongmo Park,Seung Hwan Lee,Sieun Chae,Jihang Lee,John T. Heron,Emmanouil Kioupakis,Wei Lü,Jamie Phillips
标识
DOI:10.1002/aelm.202001258
摘要
Abstract Memristors have emerged as transformative devices to enable neuromorphic and in‐memory computing, where success requires the identification and development of materials that can overcome challenges in retention and device variability. Here, high‐entropy oxide composed of Zr, Hf, Nb, Ta, Mo, and W oxides is first demonstrated as a switching material for valence change memory. This multielement oxide material provides uniform distribution and higher concentration of oxygen vacancies, limiting the stochastic behavior in resistive switching. (Zr, Hf, Nb, Ta, Mo, W) high‐entropy‐oxide‐based memristors manifest the “cocktail effect,” exhibiting comparable retention with HfO 2 ‐ or Ta 2 O 5 ‐based memristors while also demonstrating the gradual conductance modulation observed in WO 3 ‐based memristors. The electrical characterization of these high‐entropy‐oxide‐based memristors demonstrates forming‐free operation, low device and cycle variability, gradual conductance modulation, 6‐bit operation, and long retention which are promising for neuromorphic applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI