Prediction Models of Adnexal Masses: State-of-the-Art Review

医学 附件肿物 逻辑回归 超声学家 恶性肿瘤 子宫附件疾病 预测建模 卵巢肿瘤 放射科 卵巢癌 妇科 医学物理学 超声波 计算机科学 机器学习 病理 癌症 内科学 腹腔镜检查
作者
Maria Mina,Ioannis Kosmas,Ioannis Tsakiridis,Apostolos Mamopoulos,Ioannis Kalogiannidis,Apostolos Athanasiadis,Themistoklis Dagklis
出处
期刊:Obstetrical & Gynecological Survey [Lippincott Williams & Wilkins]
卷期号:76 (4): 211-222 被引量:2
标识
DOI:10.1097/ogx.0000000000000873
摘要

Several predictive models and scoring systems have been developed to differentiate between benign and malignant ovarian masses, in order to guide effective management. These models use combinations of patient characteristics, ultrasound markers, and biochemical markers.The aim of this study was to describe, compare, and prioritize, according to their strengths and qualities, all the adnexal prediction models.This was a state-of-the-art review, synthesizing the findings of the current published literature on the available prediction models of adnexal masses.The existing models include subjective assessment by expert sonographers, the International Ovarian Tumor Analysis models (logistic regression models 1 and 2, Simple Rules, 3-step strategy, and ADNEX [Assessment of Different NEoplasias in the adneXa] model), the Risk of Malignancy Index, the Risk of Malignancy Ovarian Algorithm, the Gynecologic Imaging Reporting and Data System, and the Ovarian-Adnexal Reporting and Data System. Overall, subjective assessment appears to be superior to all prediction models. However, the International Ovarian Tumor Analysis models are probably the best available methods for nonexpert examiners. The Ovarian-Adnexal Reporting and Data System is an international approach that incorporates both the common European and North American approaches, but still needs to be validated.Many prediction models exist for the assessment of adnexal masses. The adoption of a particular model is based on local guidelines, as well as sonographer's experience. The safety of expectant management of adnexal masses with benign ultrasound morphology is still under investigation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助廾匸采纳,获得10
1秒前
脑洞疼应助焚心绚华绘采纳,获得10
1秒前
1秒前
魔幻的小蘑菇完成签到 ,获得积分10
2秒前
踏雪完成签到,获得积分10
2秒前
英姑应助Chihiro采纳,获得10
3秒前
ambernameswu完成签到 ,获得积分10
4秒前
xiaofan完成签到,获得积分10
4秒前
5656发布了新的文献求助10
4秒前
斯文败类应助安静的静槐采纳,获得10
6秒前
思源应助刘胖胖采纳,获得10
6秒前
7秒前
7秒前
NNUsusan完成签到,获得积分10
8秒前
猪猪hero发布了新的文献求助10
11秒前
Nadine发布了新的文献求助10
12秒前
陈诗柳完成签到 ,获得积分10
12秒前
13秒前
17835152738完成签到,获得积分10
14秒前
14秒前
15秒前
17秒前
19秒前
Warwick完成签到,获得积分10
19秒前
感激不尽发布了新的文献求助10
19秒前
望北完成签到 ,获得积分10
20秒前
5656发布了新的文献求助10
22秒前
23秒前
24秒前
乐乐应助邸增楼采纳,获得10
24秒前
25秒前
万能图书馆应助欣欣采纳,获得10
26秒前
28秒前
liyu发布了新的文献求助10
29秒前
wanli完成签到,获得积分10
30秒前
31秒前
31秒前
如初完成签到,获得积分10
33秒前
fffff完成签到,获得积分10
34秒前
Orin完成签到 ,获得积分10
35秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3667816
求助须知:如何正确求助?哪些是违规求助? 3226284
关于积分的说明 9768970
捐赠科研通 2936235
什么是DOI,文献DOI怎么找? 1608336
邀请新用户注册赠送积分活动 759642
科研通“疑难数据库(出版商)”最低求助积分说明 735434