Prediction Models of Adnexal Masses: State-of-the-Art Review

医学 附件肿物 逻辑回归 超声学家 恶性肿瘤 子宫附件疾病 预测建模 卵巢肿瘤 放射科 卵巢癌 妇科 医学物理学 超声波 计算机科学 机器学习 病理 癌症 内科学 腹腔镜检查
作者
Maria Mina,Ioannis Kosmas,Ioannis Tsakiridis,Apostolos Mamopoulos,Ioannis Kalogiannidis,Apostolos Athanasiadis,Themistoklis Dagklis
出处
期刊:Obstetrical & Gynecological Survey [Ovid Technologies (Wolters Kluwer)]
卷期号:76 (4): 211-222 被引量:2
标识
DOI:10.1097/ogx.0000000000000873
摘要

Several predictive models and scoring systems have been developed to differentiate between benign and malignant ovarian masses, in order to guide effective management. These models use combinations of patient characteristics, ultrasound markers, and biochemical markers.The aim of this study was to describe, compare, and prioritize, according to their strengths and qualities, all the adnexal prediction models.This was a state-of-the-art review, synthesizing the findings of the current published literature on the available prediction models of adnexal masses.The existing models include subjective assessment by expert sonographers, the International Ovarian Tumor Analysis models (logistic regression models 1 and 2, Simple Rules, 3-step strategy, and ADNEX [Assessment of Different NEoplasias in the adneXa] model), the Risk of Malignancy Index, the Risk of Malignancy Ovarian Algorithm, the Gynecologic Imaging Reporting and Data System, and the Ovarian-Adnexal Reporting and Data System. Overall, subjective assessment appears to be superior to all prediction models. However, the International Ovarian Tumor Analysis models are probably the best available methods for nonexpert examiners. The Ovarian-Adnexal Reporting and Data System is an international approach that incorporates both the common European and North American approaches, but still needs to be validated.Many prediction models exist for the assessment of adnexal masses. The adoption of a particular model is based on local guidelines, as well as sonographer's experience. The safety of expectant management of adnexal masses with benign ultrasound morphology is still under investigation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ccccchen完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
羊皮大哈发布了新的文献求助10
3秒前
健壮的芹菜完成签到,获得积分20
3秒前
4秒前
沉静的红酒完成签到,获得积分10
4秒前
乌兰巴托没有海完成签到,获得积分10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
马大翔应助科研通管家采纳,获得10
4秒前
4秒前
文艺的冬卉完成签到,获得积分20
5秒前
莓烦恼完成签到 ,获得积分10
6秒前
从容雨筠完成签到,获得积分10
6秒前
111966完成签到,获得积分10
6秒前
Noldor应助微微采纳,获得10
6秒前
静静完成签到,获得积分10
6秒前
xpd发布了新的文献求助30
7秒前
yi发布了新的文献求助10
7秒前
云ch完成签到,获得积分10
8秒前
Lucas应助simple采纳,获得10
9秒前
英勇的小强完成签到,获得积分10
10秒前
xfwang发布了新的文献求助10
11秒前
易子完成签到 ,获得积分10
11秒前
HUSHIYI完成签到,获得积分10
11秒前
huco完成签到,获得积分10
11秒前
HonestLiang完成签到,获得积分10
12秒前
失眠的安卉完成签到,获得积分10
12秒前
蜉蝣完成签到 ,获得积分10
13秒前
黑色的白鲸完成签到,获得积分10
13秒前
皮皮发布了新的文献求助10
13秒前
guoguo完成签到,获得积分10
13秒前
寻桃完成签到,获得积分10
14秒前
lezbj99发布了新的文献求助100
14秒前
dlm完成签到,获得积分10
15秒前
火山暴涨球技完成签到,获得积分10
15秒前
今后应助xpd采纳,获得30
15秒前
16秒前
CX完成签到 ,获得积分10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146969
求助须知:如何正确求助?哪些是违规求助? 2798255
关于积分的说明 7827373
捐赠科研通 2454823
什么是DOI,文献DOI怎么找? 1306491
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565