H2MN

计算机科学 因子临界图 电压图 空图形 图形 蝴蝶图 理论计算机科学 折线图 图因式分解 图形属性 人工智能
作者
Zhen Zhang,Jiajun Bu,Martin Ester,Zhao Li,Chengwei Yao,Zhi Yu,Can Wang
出处
期刊:Knowledge Discovery and Data Mining 被引量:15
标识
DOI:10.1145/3447548.3467328
摘要

Graph similarity learning, which measures the similarities between a pair of graph-structured objects, lies at the core of various machine learning tasks such as graph classification, similarity search, etc. In this paper, we devise a novel graph neural network based framework to address this challenging problem, motivated by its great success in graph representation learning. As the vast majority of existing graph neural network models mainly concentrate on learning effective node or graph level representations of a single graph, little effort has been made to jointly reason over a pair of graph-structured inputs for graph similarity learning. To this end, we propose Hierarchical Hypergraph Matching Networks (H2sup>MN) to calculate the similarities between graph pairs with arbitrary structure. Specifically, our proposed H2MN learns graph representation from the perspective of hypergraph, and takes each hyperedge as a subgraph to perform subgraph matching, which could capture the rich substructure similarities across the graph. To enable hierarchical graph representation and fast similarity computation, we further propose a hyperedge pooling operator to transform each graph into a coarse graph of reduced size. Then, a multi-perspective cross-graph matching layer is employed on the coarsened graph pairs to extract the inter-graph similarity. Comprehensive experiments on five public datasets empirically demonstrate that our proposed model can outperform state-of-the-art baselines with different gains for graph-graph classification and regression tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助yyy采纳,获得10
1秒前
秦宇麒完成签到,获得积分20
2秒前
浮尘完成签到 ,获得积分0
2秒前
DengLingjie完成签到,获得积分20
3秒前
wang发布了新的文献求助10
4秒前
哎哟很烦完成签到,获得积分10
4秒前
情怀应助秦宇麒采纳,获得10
6秒前
weddcf发布了新的文献求助20
7秒前
小二郎应助seem233采纳,获得10
7秒前
毅诚菌完成签到,获得积分10
9秒前
迷路羽毛发布了新的文献求助10
9秒前
10秒前
江浔卿完成签到 ,获得积分10
12秒前
yyy完成签到,获得积分10
12秒前
12秒前
13秒前
14秒前
yyy发布了新的文献求助10
15秒前
15秒前
大胆胡萝卜完成签到,获得积分10
16秒前
Lucas应助十七采纳,获得10
16秒前
17秒前
drgaoying发布了新的文献求助10
17秒前
绿泡芙完成签到 ,获得积分10
17秒前
17秒前
18秒前
宁静致远完成签到,获得积分10
19秒前
猪肉水饺发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
唐焱杰完成签到,获得积分10
20秒前
万能图书馆应助俭朴青烟采纳,获得10
20秒前
汤朝雪发布了新的文献求助20
21秒前
Ava应助drgaoying采纳,获得10
22秒前
25秒前
丘比特应助ggyy采纳,获得10
25秒前
十月发布了新的文献求助20
25秒前
26秒前
12369发布了新的文献求助10
29秒前
秦宇麒发布了新的文献求助10
30秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010343
求助须知:如何正确求助?哪些是违规求助? 3550209
关于积分的说明 11305256
捐赠科研通 3284663
什么是DOI,文献DOI怎么找? 1810786
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811451