计算机科学
因子临界图
电压图
空图形
图形
蝴蝶图
理论计算机科学
折线图
图因式分解
图形属性
人工智能
作者
Zhen Zhang,Jiajun Bu,Martin Ester,Zhao Li,Chengwei Yao,Zhi Yu,Can Wang
出处
期刊:Knowledge Discovery and Data Mining
日期:2021-08-14
被引量:15
标识
DOI:10.1145/3447548.3467328
摘要
Graph similarity learning, which measures the similarities between a pair of graph-structured objects, lies at the core of various machine learning tasks such as graph classification, similarity search, etc. In this paper, we devise a novel graph neural network based framework to address this challenging problem, motivated by its great success in graph representation learning. As the vast majority of existing graph neural network models mainly concentrate on learning effective node or graph level representations of a single graph, little effort has been made to jointly reason over a pair of graph-structured inputs for graph similarity learning. To this end, we propose Hierarchical Hypergraph Matching Networks (H2sup>MN) to calculate the similarities between graph pairs with arbitrary structure. Specifically, our proposed H2MN learns graph representation from the perspective of hypergraph, and takes each hyperedge as a subgraph to perform subgraph matching, which could capture the rich substructure similarities across the graph. To enable hierarchical graph representation and fast similarity computation, we further propose a hyperedge pooling operator to transform each graph into a coarse graph of reduced size. Then, a multi-perspective cross-graph matching layer is employed on the coarsened graph pairs to extract the inter-graph similarity. Comprehensive experiments on five public datasets empirically demonstrate that our proposed model can outperform state-of-the-art baselines with different gains for graph-graph classification and regression tasks.
科研通智能强力驱动
Strongly Powered by AbleSci AI