H2MN

计算机科学 因子临界图 电压图 空图形 图形 蝴蝶图 理论计算机科学 折线图 图因式分解 图形属性 人工智能
作者
Zhen Zhang,Jiajun Bu,Martin Ester,Zhao Li,Chengwei Yao,Zhi Yu,Can Wang
出处
期刊:Knowledge Discovery and Data Mining 被引量:15
标识
DOI:10.1145/3447548.3467328
摘要

Graph similarity learning, which measures the similarities between a pair of graph-structured objects, lies at the core of various machine learning tasks such as graph classification, similarity search, etc. In this paper, we devise a novel graph neural network based framework to address this challenging problem, motivated by its great success in graph representation learning. As the vast majority of existing graph neural network models mainly concentrate on learning effective node or graph level representations of a single graph, little effort has been made to jointly reason over a pair of graph-structured inputs for graph similarity learning. To this end, we propose Hierarchical Hypergraph Matching Networks (H2sup>MN) to calculate the similarities between graph pairs with arbitrary structure. Specifically, our proposed H2MN learns graph representation from the perspective of hypergraph, and takes each hyperedge as a subgraph to perform subgraph matching, which could capture the rich substructure similarities across the graph. To enable hierarchical graph representation and fast similarity computation, we further propose a hyperedge pooling operator to transform each graph into a coarse graph of reduced size. Then, a multi-perspective cross-graph matching layer is employed on the coarsened graph pairs to extract the inter-graph similarity. Comprehensive experiments on five public datasets empirically demonstrate that our proposed model can outperform state-of-the-art baselines with different gains for graph-graph classification and regression tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
司南应助chase采纳,获得10
2秒前
科研通AI2S应助左白易采纳,获得10
2秒前
口腔溃杨完成签到,获得积分10
2秒前
依霏完成签到,获得积分10
4秒前
4秒前
海绵宝宝发布了新的文献求助30
5秒前
6秒前
6秒前
luqiu完成签到,获得积分10
8秒前
Jing完成签到 ,获得积分10
9秒前
柒柒发布了新的文献求助10
10秒前
哆小咪完成签到 ,获得积分10
10秒前
muxinzx发布了新的文献求助10
10秒前
可爱的函函应助东yang采纳,获得10
14秒前
14秒前
14秒前
欣慰碧琴完成签到,获得积分10
18秒前
panda到家发布了新的文献求助10
18秒前
科目三应助muxinzx采纳,获得10
19秒前
期待完成签到,获得积分10
21秒前
NexusExplorer应助柒柒采纳,获得10
23秒前
Akim应助牛八先生采纳,获得10
23秒前
24秒前
24秒前
24秒前
领导范儿应助迷路又菱采纳,获得10
25秒前
彭于晏应助Bennyz采纳,获得10
27秒前
28秒前
28秒前
期待发布了新的文献求助10
29秒前
左白易发布了新的文献求助10
29秒前
半雨叹发布了新的文献求助10
29秒前
倪倪驳回了Jasper应助
30秒前
Orange应助panda到家采纳,获得10
31秒前
32秒前
32秒前
34秒前
花花发布了新的文献求助10
34秒前
不配.应助左白易采纳,获得10
35秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240773
求助须知:如何正确求助?哪些是违规求助? 2885503
关于积分的说明 8238845
捐赠科研通 2553913
什么是DOI,文献DOI怎么找? 1382066
科研通“疑难数据库(出版商)”最低求助积分说明 649461
邀请新用户注册赠送积分活动 625079