H2MN

计算机科学 因子临界图 电压图 空图形 图形 蝴蝶图 理论计算机科学 折线图 图因式分解 图形属性 人工智能
作者
Zhen Zhang,Jiajun Bu,Martin Ester,Zhao Li,Chengwei Yao,Zhi Yu,Can Wang
出处
期刊:Knowledge Discovery and Data Mining 卷期号:: 2274-2284 被引量:27
标识
DOI:10.1145/3447548.3467328
摘要

Graph similarity learning, which measures the similarities between a pair of graph-structured objects, lies at the core of various machine learning tasks such as graph classification, similarity search, etc. In this paper, we devise a novel graph neural network based framework to address this challenging problem, motivated by its great success in graph representation learning. As the vast majority of existing graph neural network models mainly concentrate on learning effective node or graph level representations of a single graph, little effort has been made to jointly reason over a pair of graph-structured inputs for graph similarity learning. To this end, we propose Hierarchical Hypergraph Matching Networks (H2sup>MN) to calculate the similarities between graph pairs with arbitrary structure. Specifically, our proposed H2MN learns graph representation from the perspective of hypergraph, and takes each hyperedge as a subgraph to perform subgraph matching, which could capture the rich substructure similarities across the graph. To enable hierarchical graph representation and fast similarity computation, we further propose a hyperedge pooling operator to transform each graph into a coarse graph of reduced size. Then, a multi-perspective cross-graph matching layer is employed on the coarsened graph pairs to extract the inter-graph similarity. Comprehensive experiments on five public datasets empirically demonstrate that our proposed model can outperform state-of-the-art baselines with different gains for graph-graph classification and regression tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
儒雅静柏完成签到,获得积分10
刚刚
Chengzhu7发布了新的文献求助10
1秒前
1秒前
顾矜应助小徐采纳,获得10
1秒前
Limulu发布了新的文献求助30
1秒前
Hin66发布了新的文献求助10
3秒前
侯总应助南笛采纳,获得10
3秒前
Protein完成签到,获得积分10
3秒前
充电宝应助千禧龙采纳,获得10
3秒前
Junanne完成签到,获得积分10
4秒前
Susu完成签到,获得积分10
4秒前
6秒前
nn发布了新的文献求助10
6秒前
wsmmmmm发布了新的文献求助10
6秒前
欣欣完成签到,获得积分10
7秒前
8秒前
库库里里大完成签到,获得积分10
8秒前
追光者发布了新的文献求助10
9秒前
沉默的倔驴应助lhOAQ采纳,获得10
10秒前
南也关注了科研通微信公众号
10秒前
懒癌晚期完成签到,获得积分10
11秒前
11秒前
Hin66完成签到,获得积分20
12秒前
12秒前
12秒前
orixero应助hmj采纳,获得10
13秒前
能干的邹发布了新的文献求助10
14秒前
15秒前
何意味完成签到 ,获得积分10
16秒前
水木年华发布了新的文献求助10
16秒前
18秒前
18秒前
彭于晏应助欣喜的尔曼采纳,获得10
18秒前
19秒前
木又权完成签到,获得积分10
20秒前
能干的邹完成签到,获得积分10
20秒前
善学以致用应助艾原采纳,获得10
20秒前
科研通AI6应助任成艳采纳,获得10
20秒前
岳拔萃发布了新的文献求助10
21秒前
茉莉完成签到,获得积分10
21秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588355
求助须知:如何正确求助?哪些是违规求助? 4671484
关于积分的说明 14787308
捐赠科研通 4625063
什么是DOI,文献DOI怎么找? 2531787
邀请新用户注册赠送积分活动 1500349
关于科研通互助平台的介绍 1468300