Association of snoring characteristics with predominant site of collapse of upper airway in obstructive sleep apnea patients

多导睡眠图 气道 舌头 阻塞性睡眠呼吸暂停 呼吸不足 医学 睡眠呼吸暂停 呼吸暂停 睡眠(系统调用) 呼吸 语音识别 计算机科学 模式识别(心理学) 听力学 人工智能 外科 心脏病学 麻醉 病理 操作系统
作者
Arun Sebastian,Peter A. Cistulli,Gary Cohen,Philip de Chazal
出处
期刊:Sleep [Oxford University Press]
卷期号:44 (12) 被引量:14
标识
DOI:10.1093/sleep/zsab176
摘要

Abstract Study Objectives Acoustic analysis of isolated events and snoring by previous researchers suggests a correlation between individual acoustic features and individual site of collapse events. In this study, we hypothesized that multiparameter evaluation of snore sounds during natural sleep would provide a robust prediction of the predominant site of airway collapse. Methods The audio signals of 58 obstructive sleep apnea patients were recorded simultaneously with full-night polysomnography. The site of collapse was determined by manual analysis of the shape of the airflow signal during hypopnea events and corresponding audio signal segments containing snore were manually extracted and processed. Machine learning algorithms were developed to automatically annotate the site of collapse of each hypopnea event into three classes (lateral wall, palate, and tongue base). The predominant site of collapse for a sleep period was determined from the individual hypopnea annotations and compared to the manually determined annotations. This was a retrospective study that used cross-validation to estimate performance. Results Cluster analysis showed that the data fit well in two clusters with a mean silhouette coefficient of 0.79 and an accuracy of 68% for classifying tongue/non-tongue collapse. A classification model using linear discriminants achieved an overall accuracy of 81% for discriminating tongue/non-tongue predominant site of collapse and accuracy of 64% for all site of collapse classes. Conclusions Our results reveal that the snore signal during hypopnea can provide information regarding the predominant site of collapse in the upper airway. Therefore, the audio signal recorded during sleep could potentially be used as a new tool in identifying the predominant site of collapse and consequently improving the treatment selection and outcome.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善良天抒完成签到,获得积分10
刚刚
景茶茶完成签到 ,获得积分10
1秒前
Viva发布了新的文献求助10
2秒前
2秒前
XS_QI完成签到 ,获得积分10
5秒前
always完成签到 ,获得积分10
5秒前
跳跃鸽子发布了新的文献求助10
5秒前
8秒前
8秒前
小二郎应助笨笨采纳,获得10
9秒前
田所浩二完成签到 ,获得积分10
9秒前
晶生完成签到,获得积分10
10秒前
junru发布了新的文献求助10
11秒前
有魅力棉花糖完成签到,获得积分10
12秒前
眰恦完成签到 ,获得积分10
13秒前
13秒前
ikki发布了新的文献求助10
14秒前
14秒前
15秒前
文龙发布了新的文献求助200
15秒前
17秒前
内向的青荷完成签到,获得积分10
18秒前
Felix完成签到 ,获得积分10
18秒前
李健的粉丝团团长应助ikki采纳,获得10
19秒前
小吴同志发布了新的文献求助10
19秒前
小狐狸发布了新的文献求助10
19秒前
Makta发布了新的文献求助10
22秒前
zhangxiangwei发布了新的文献求助10
22秒前
Treasure发布了新的文献求助10
23秒前
Lyuiii发布了新的文献求助10
23秒前
笨笨发布了新的文献求助10
24秒前
24秒前
华仔应助小狐狸采纳,获得10
24秒前
25秒前
嘟嘟发布了新的文献求助10
25秒前
26秒前
Hey发布了新的文献求助10
26秒前
28秒前
无辜如音发布了新的文献求助20
28秒前
LWJ完成签到 ,获得积分10
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137328
求助须知:如何正确求助?哪些是违规求助? 2788413
关于积分的说明 7786262
捐赠科研通 2444571
什么是DOI,文献DOI怎么找? 1299936
科研通“疑难数据库(出版商)”最低求助积分说明 625680
版权声明 601023