Association of snoring characteristics with predominant site of collapse of upper airway in obstructive sleep apnea patients

多导睡眠图 气道 舌头 阻塞性睡眠呼吸暂停 呼吸不足 医学 睡眠呼吸暂停 呼吸暂停 睡眠(系统调用) 呼吸 语音识别 计算机科学 模式识别(心理学) 听力学 人工智能 外科 心脏病学 麻醉 病理 操作系统
作者
Arun Sebastian,Peter A. Cistulli,Gary Cohen,Philip de Chazal
出处
期刊:Sleep [Oxford University Press]
卷期号:44 (12) 被引量:14
标识
DOI:10.1093/sleep/zsab176
摘要

Abstract Study Objectives Acoustic analysis of isolated events and snoring by previous researchers suggests a correlation between individual acoustic features and individual site of collapse events. In this study, we hypothesized that multiparameter evaluation of snore sounds during natural sleep would provide a robust prediction of the predominant site of airway collapse. Methods The audio signals of 58 obstructive sleep apnea patients were recorded simultaneously with full-night polysomnography. The site of collapse was determined by manual analysis of the shape of the airflow signal during hypopnea events and corresponding audio signal segments containing snore were manually extracted and processed. Machine learning algorithms were developed to automatically annotate the site of collapse of each hypopnea event into three classes (lateral wall, palate, and tongue base). The predominant site of collapse for a sleep period was determined from the individual hypopnea annotations and compared to the manually determined annotations. This was a retrospective study that used cross-validation to estimate performance. Results Cluster analysis showed that the data fit well in two clusters with a mean silhouette coefficient of 0.79 and an accuracy of 68% for classifying tongue/non-tongue collapse. A classification model using linear discriminants achieved an overall accuracy of 81% for discriminating tongue/non-tongue predominant site of collapse and accuracy of 64% for all site of collapse classes. Conclusions Our results reveal that the snore signal during hypopnea can provide information regarding the predominant site of collapse in the upper airway. Therefore, the audio signal recorded during sleep could potentially be used as a new tool in identifying the predominant site of collapse and consequently improving the treatment selection and outcome.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助科研通管家采纳,获得10
刚刚
我是老大应助科研通管家采纳,获得10
刚刚
changping应助科研通管家采纳,获得30
刚刚
刚刚
刚刚
Hello应助十三采纳,获得10
2秒前
3秒前
难过曼冬完成签到 ,获得积分10
4秒前
小马甲应助wang5945采纳,获得10
4秒前
4秒前
PANYIAO完成签到,获得积分10
4秒前
4秒前
5秒前
Orange应助Luo采纳,获得10
5秒前
李嘉衡关注了科研通微信公众号
5秒前
情怀应助高贵小海豚采纳,获得10
5秒前
6秒前
赵李锋完成签到,获得积分10
6秒前
风趣的飞荷完成签到,获得积分10
6秒前
诱导效应完成签到,获得积分10
7秒前
haha111完成签到,获得积分10
7秒前
104zw完成签到,获得积分10
7秒前
7秒前
FashionBoy应助小小何采纳,获得10
7秒前
858278343发布了新的文献求助10
8秒前
8秒前
慕青应助大内泌探009采纳,获得10
8秒前
8秒前
落寞之云发布了新的文献求助10
9秒前
10秒前
12秒前
丘比特应助一一采纳,获得10
12秒前
香蕉觅云应助HJJHJH采纳,获得10
14秒前
liuyifei发布了新的文献求助20
15秒前
tt完成签到 ,获得积分10
16秒前
17秒前
范冰冰发布了新的文献求助10
17秒前
18秒前
慕青应助yiuqiu采纳,获得10
20秒前
大成子发布了新的文献求助20
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《机器学习——数据表示学习及应用》 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Fiction e non fiction: storia, teorie e forme 500
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5321937
求助须知:如何正确求助?哪些是违规求助? 4463561
关于积分的说明 13890461
捐赠科研通 4354764
什么是DOI,文献DOI怎么找? 2392002
邀请新用户注册赠送积分活动 1385582
关于科研通互助平台的介绍 1355331