Association of snoring characteristics with predominant site of collapse of upper airway in obstructive sleep apnea patients

多导睡眠图 气道 舌头 阻塞性睡眠呼吸暂停 呼吸不足 医学 睡眠呼吸暂停 呼吸暂停 睡眠(系统调用) 呼吸 语音识别 计算机科学 模式识别(心理学) 听力学 人工智能 外科 心脏病学 麻醉 病理 操作系统
作者
Arun Sebastian,Peter A. Cistulli,Gary Cohen,Philip de Chazal
出处
期刊:Sleep [Oxford University Press]
卷期号:44 (12) 被引量:14
标识
DOI:10.1093/sleep/zsab176
摘要

Abstract Study Objectives Acoustic analysis of isolated events and snoring by previous researchers suggests a correlation between individual acoustic features and individual site of collapse events. In this study, we hypothesized that multiparameter evaluation of snore sounds during natural sleep would provide a robust prediction of the predominant site of airway collapse. Methods The audio signals of 58 obstructive sleep apnea patients were recorded simultaneously with full-night polysomnography. The site of collapse was determined by manual analysis of the shape of the airflow signal during hypopnea events and corresponding audio signal segments containing snore were manually extracted and processed. Machine learning algorithms were developed to automatically annotate the site of collapse of each hypopnea event into three classes (lateral wall, palate, and tongue base). The predominant site of collapse for a sleep period was determined from the individual hypopnea annotations and compared to the manually determined annotations. This was a retrospective study that used cross-validation to estimate performance. Results Cluster analysis showed that the data fit well in two clusters with a mean silhouette coefficient of 0.79 and an accuracy of 68% for classifying tongue/non-tongue collapse. A classification model using linear discriminants achieved an overall accuracy of 81% for discriminating tongue/non-tongue predominant site of collapse and accuracy of 64% for all site of collapse classes. Conclusions Our results reveal that the snore signal during hypopnea can provide information regarding the predominant site of collapse in the upper airway. Therefore, the audio signal recorded during sleep could potentially be used as a new tool in identifying the predominant site of collapse and consequently improving the treatment selection and outcome.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柠檬不吃酸完成签到 ,获得积分10
1秒前
彦希完成签到 ,获得积分10
1秒前
俭朴的宛完成签到 ,获得积分10
2秒前
研友_Y59785应助bronny采纳,获得10
2秒前
LingYun完成签到,获得积分10
4秒前
6秒前
10秒前
bronny完成签到,获得积分10
10秒前
10秒前
Profeto发布了新的文献求助10
10秒前
天天快乐应助汪汪别吃了采纳,获得10
11秒前
醉熏的宝马完成签到,获得积分10
14秒前
111发布了新的文献求助10
15秒前
谦谦神棍完成签到,获得积分10
16秒前
16秒前
17秒前
Profeto完成签到,获得积分10
17秒前
雷培发布了新的文献求助10
17秒前
18秒前
狂奔弟弟2完成签到 ,获得积分10
19秒前
CodeCraft应助昭昭找不到采纳,获得10
20秒前
21秒前
桃子发布了新的文献求助10
24秒前
24秒前
明小丽完成签到,获得积分10
26秒前
狂奔弟弟完成签到 ,获得积分10
28秒前
李沐唅完成签到 ,获得积分10
28秒前
顾矜应助麟钰采纳,获得10
29秒前
桃子完成签到,获得积分10
30秒前
33秒前
34秒前
迹K完成签到,获得积分10
35秒前
风趣海吃饭侠完成签到 ,获得积分10
37秒前
37秒前
英姑应助科研通管家采纳,获得10
37秒前
桐桐应助科研通管家采纳,获得10
38秒前
张北海应助科研通管家采纳,获得10
38秒前
坦率的匪应助科研通管家采纳,获得10
38秒前
思思发布了新的文献求助10
38秒前
丘比特应助科研通管家采纳,获得10
38秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997611
求助须知:如何正确求助?哪些是违规求助? 3537154
关于积分的说明 11270819
捐赠科研通 3276323
什么是DOI,文献DOI怎么找? 1806885
邀请新用户注册赠送积分活动 883576
科研通“疑难数据库(出版商)”最低求助积分说明 809975