Machine Learning on DNA-Encoded Library Count Data Using an Uncertainty-Aware Probabilistic Loss Function

计算机科学 功能(生物学) 机器学习 数据挖掘 人工智能 概率逻辑 计算生物学 计数数据 统计 生物 数学 遗传学 泊松分布
作者
Katherine S. Lim,Andrew G. Reidenbach,Bruce K. Hua,Jeremy W. Mason,Christopher J. Gerry,Paul A. Clemons,Connor W. Coley
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (10): 2316-2331 被引量:28
标识
DOI:10.1021/acs.jcim.2c00041
摘要

DNA-encoded library (DEL) screening and quantitative structure-activity relationship (QSAR) modeling are two techniques used in drug discovery to find novel small molecules that bind a protein target. Applying QSAR modeling to DEL selection data can facilitate the selection of compounds for off-DNA synthesis and evaluation. Such a combined approach has been done recently by training binary classifiers to learn DEL enrichments of aggregated "disynthons" in order to accommodate the sparse and noisy nature of DEL data. However, a binary classification model cannot distinguish between different levels of enrichment, and information is potentially lost during disynthon aggregation. Here, we demonstrate a regression approach to learning DEL enrichments of individual molecules, using a custom negative-log-likelihood loss function that effectively denoises DEL data and introduces opportunities for visualization of learned structure-activity relationships. Our approach explicitly models the Poisson statistics of the sequencing process used in the DEL experimental workflow under a frequentist view. We illustrate this approach on a DEL dataset of 108,528 compounds screened against carbonic anhydrase (CAIX), and a dataset of 5,655,000 compounds screened against soluble epoxide hydrolase (sEH) and SIRT2. Due to the treatment of uncertainty in the data through the negative-log-likelihood loss used during training, the models can ignore low-confidence outliers. While our approach does not demonstrate a benefit for extrapolation to novel structures, we expect our denoising and visualization pipeline to be useful in identifying structure-activity trends and highly enriched pharmacophores in DEL data. Further, this approach to uncertainty-aware regression modeling is applicable to other sparse or noisy datasets where the nature of stochasticity is known or can be modeled; in particular, the Poisson enrichment ratio metric we use can apply to other settings that compare sequencing count data between two experimental conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SirDream完成签到,获得积分10
刚刚
kunkun完成签到,获得积分10
1秒前
llwxx发布了新的文献求助10
1秒前
勤劳白翠发布了新的文献求助10
1秒前
biudungdung发布了新的文献求助10
1秒前
2秒前
罗祥宇发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
赘婿应助爱浦西的迪克采纳,获得10
3秒前
3秒前
FashionBoy应助三水采纳,获得10
3秒前
局内人发布了新的文献求助10
5秒前
5秒前
5秒前
丘比特应助叶子采纳,获得10
6秒前
尼嚎发布了新的文献求助10
6秒前
6秒前
月亮不知道完成签到,获得积分10
6秒前
GingerF应助farr采纳,获得50
7秒前
anna521212发布了新的文献求助10
7秒前
7秒前
7秒前
研友_ZrBNxZ完成签到,获得积分10
7秒前
kkem发布了新的文献求助10
7秒前
8秒前
8秒前
深情安青应助外向的梦安采纳,获得10
8秒前
彩色芝麻发布了新的文献求助10
8秒前
阳光彩虹发布了新的文献求助10
8秒前
30°C发布了新的文献求助10
8秒前
samuealndjw完成签到,获得积分10
9秒前
9秒前
光0921发布了新的文献求助10
9秒前
song完成签到,获得积分10
9秒前
旅途完成签到,获得积分10
9秒前
10秒前
英姑应助xxx7749采纳,获得10
10秒前
科研通AI6应助豌豆射手采纳,获得10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5750468
求助须知:如何正确求助?哪些是违规求助? 5464085
关于积分的说明 15366838
捐赠科研通 4889446
什么是DOI,文献DOI怎么找? 2629235
邀请新用户注册赠送积分活动 1577526
关于科研通互助平台的介绍 1534012