Machine Learning on DNA-Encoded Library Count Data Using an Uncertainty-Aware Probabilistic Loss Function

计算机科学 功能(生物学) 机器学习 数据挖掘 人工智能 概率逻辑 计算生物学 计数数据 统计 生物 数学 遗传学 泊松分布
作者
Katherine S. Lim,Andrew G. Reidenbach,Bruce K. Hua,Jeremy W. Mason,Christopher J. Gerry,Paul A. Clemons,Connor W. Coley
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (10): 2316-2331 被引量:28
标识
DOI:10.1021/acs.jcim.2c00041
摘要

DNA-encoded library (DEL) screening and quantitative structure-activity relationship (QSAR) modeling are two techniques used in drug discovery to find novel small molecules that bind a protein target. Applying QSAR modeling to DEL selection data can facilitate the selection of compounds for off-DNA synthesis and evaluation. Such a combined approach has been done recently by training binary classifiers to learn DEL enrichments of aggregated "disynthons" in order to accommodate the sparse and noisy nature of DEL data. However, a binary classification model cannot distinguish between different levels of enrichment, and information is potentially lost during disynthon aggregation. Here, we demonstrate a regression approach to learning DEL enrichments of individual molecules, using a custom negative-log-likelihood loss function that effectively denoises DEL data and introduces opportunities for visualization of learned structure-activity relationships. Our approach explicitly models the Poisson statistics of the sequencing process used in the DEL experimental workflow under a frequentist view. We illustrate this approach on a DEL dataset of 108,528 compounds screened against carbonic anhydrase (CAIX), and a dataset of 5,655,000 compounds screened against soluble epoxide hydrolase (sEH) and SIRT2. Due to the treatment of uncertainty in the data through the negative-log-likelihood loss used during training, the models can ignore low-confidence outliers. While our approach does not demonstrate a benefit for extrapolation to novel structures, we expect our denoising and visualization pipeline to be useful in identifying structure-activity trends and highly enriched pharmacophores in DEL data. Further, this approach to uncertainty-aware regression modeling is applicable to other sparse or noisy datasets where the nature of stochasticity is known or can be modeled; in particular, the Poisson enrichment ratio metric we use can apply to other settings that compare sequencing count data between two experimental conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
摇摇摇不匀完成签到 ,获得积分10
刚刚
1秒前
LiuHD发布了新的文献求助10
5秒前
EgbertW完成签到,获得积分10
5秒前
理想国的过客完成签到,获得积分10
6秒前
小苏发布了新的文献求助10
6秒前
星熠完成签到,获得积分10
8秒前
9秒前
hhhhhhhhhh完成签到 ,获得积分10
10秒前
潇潇完成签到,获得积分10
11秒前
LiuHD完成签到,获得积分10
12秒前
滴滴如玉完成签到,获得积分10
12秒前
flysky120发布了新的文献求助30
12秒前
本是个江湖散人完成签到,获得积分10
14秒前
zxg发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
ceeray23应助温暖的颜演采纳,获得10
15秒前
15秒前
FashionBoy应助做梦采纳,获得10
15秒前
尊敬的花卷完成签到 ,获得积分10
16秒前
zw完成签到 ,获得积分10
16秒前
吕凯良发布了新的文献求助10
17秒前
nenoaowu发布了新的文献求助10
17秒前
石头完成签到 ,获得积分10
19秒前
小冯完成签到 ,获得积分10
19秒前
懵懂的忻发布了新的文献求助20
20秒前
21秒前
YJH发布了新的文献求助10
22秒前
nenoaowu完成签到,获得积分10
22秒前
22秒前
momo102610完成签到,获得积分10
23秒前
壮观的海豚完成签到 ,获得积分10
24秒前
二十而耳顺完成签到,获得积分10
24秒前
大气的尔蓝完成签到,获得积分10
25秒前
乐乐应助小苏采纳,获得10
26秒前
呆呆发布了新的文献求助10
26秒前
Antonio完成签到,获得积分10
27秒前
zhaoshao完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565327
求助须知:如何正确求助?哪些是违规求助? 4650317
关于积分的说明 14690672
捐赠科研通 4592233
什么是DOI,文献DOI怎么找? 2519494
邀请新用户注册赠送积分活动 1491964
关于科研通互助平台的介绍 1463183