Machine Learning on DNA-Encoded Library Count Data Using an Uncertainty-Aware Probabilistic Loss Function

计算机科学 功能(生物学) 机器学习 数据挖掘 人工智能 概率逻辑 计算生物学 计数数据 统计 生物 数学 遗传学 泊松分布
作者
Katherine S. Lim,Andrew G. Reidenbach,Bruce K. Hua,Jeremy W. Mason,Christopher J. Gerry,Paul A. Clemons,Connor W. Coley
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (10): 2316-2331 被引量:28
标识
DOI:10.1021/acs.jcim.2c00041
摘要

DNA-encoded library (DEL) screening and quantitative structure-activity relationship (QSAR) modeling are two techniques used in drug discovery to find novel small molecules that bind a protein target. Applying QSAR modeling to DEL selection data can facilitate the selection of compounds for off-DNA synthesis and evaluation. Such a combined approach has been done recently by training binary classifiers to learn DEL enrichments of aggregated "disynthons" in order to accommodate the sparse and noisy nature of DEL data. However, a binary classification model cannot distinguish between different levels of enrichment, and information is potentially lost during disynthon aggregation. Here, we demonstrate a regression approach to learning DEL enrichments of individual molecules, using a custom negative-log-likelihood loss function that effectively denoises DEL data and introduces opportunities for visualization of learned structure-activity relationships. Our approach explicitly models the Poisson statistics of the sequencing process used in the DEL experimental workflow under a frequentist view. We illustrate this approach on a DEL dataset of 108,528 compounds screened against carbonic anhydrase (CAIX), and a dataset of 5,655,000 compounds screened against soluble epoxide hydrolase (sEH) and SIRT2. Due to the treatment of uncertainty in the data through the negative-log-likelihood loss used during training, the models can ignore low-confidence outliers. While our approach does not demonstrate a benefit for extrapolation to novel structures, we expect our denoising and visualization pipeline to be useful in identifying structure-activity trends and highly enriched pharmacophores in DEL data. Further, this approach to uncertainty-aware regression modeling is applicable to other sparse or noisy datasets where the nature of stochasticity is known or can be modeled; in particular, the Poisson enrichment ratio metric we use can apply to other settings that compare sequencing count data between two experimental conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超级亿先发布了新的文献求助10
刚刚
赵晴发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
诸忆雪发布了新的文献求助10
3秒前
4秒前
舒服的牛排完成签到 ,获得积分10
5秒前
5秒前
5秒前
5秒前
ql88完成签到,获得积分10
6秒前
6秒前
7秒前
浮游应助xiaoyu采纳,获得10
8秒前
灰大壮壮发布了新的文献求助30
8秒前
Dxm完成签到 ,获得积分10
8秒前
专注的兰发布了新的文献求助10
9秒前
xinglin发布了新的文献求助10
10秒前
10秒前
Zzy22发布了新的文献求助10
10秒前
谋司马师发布了新的文献求助10
10秒前
cjzj完成签到,获得积分10
11秒前
情怀应助bzy采纳,获得10
11秒前
11秒前
季夏发布了新的文献求助10
11秒前
13秒前
Ronalsen完成签到 ,获得积分10
13秒前
15秒前
15秒前
16秒前
malele发布了新的文献求助10
19秒前
棒棒的红红完成签到,获得积分10
19秒前
崔雪峰完成签到,获得积分10
19秒前
21秒前
灰大壮壮完成签到,获得积分20
22秒前
22秒前
小青椒应助WFZ采纳,获得20
22秒前
CodeCraft应助sci大户采纳,获得10
23秒前
Owen应助赵晴采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5307165
求助须知:如何正确求助?哪些是违规求助? 4452863
关于积分的说明 13855440
捐赠科研通 4340491
什么是DOI,文献DOI怎么找? 2383191
邀请新用户注册赠送积分活动 1378035
关于科研通互助平台的介绍 1345875