Machine Learning on DNA-Encoded Library Count Data Using an Uncertainty-Aware Probabilistic Loss Function

计算机科学 功能(生物学) 机器学习 数据挖掘 人工智能 概率逻辑 计算生物学 计数数据 统计 生物 数学 遗传学 泊松分布
作者
Katherine S. Lim,Andrew G. Reidenbach,Bruce K. Hua,Jeremy W. Mason,Christopher J. Gerry,Paul A. Clemons,Connor W. Coley
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (10): 2316-2331 被引量:28
标识
DOI:10.1021/acs.jcim.2c00041
摘要

DNA-encoded library (DEL) screening and quantitative structure-activity relationship (QSAR) modeling are two techniques used in drug discovery to find novel small molecules that bind a protein target. Applying QSAR modeling to DEL selection data can facilitate the selection of compounds for off-DNA synthesis and evaluation. Such a combined approach has been done recently by training binary classifiers to learn DEL enrichments of aggregated "disynthons" in order to accommodate the sparse and noisy nature of DEL data. However, a binary classification model cannot distinguish between different levels of enrichment, and information is potentially lost during disynthon aggregation. Here, we demonstrate a regression approach to learning DEL enrichments of individual molecules, using a custom negative-log-likelihood loss function that effectively denoises DEL data and introduces opportunities for visualization of learned structure-activity relationships. Our approach explicitly models the Poisson statistics of the sequencing process used in the DEL experimental workflow under a frequentist view. We illustrate this approach on a DEL dataset of 108,528 compounds screened against carbonic anhydrase (CAIX), and a dataset of 5,655,000 compounds screened against soluble epoxide hydrolase (sEH) and SIRT2. Due to the treatment of uncertainty in the data through the negative-log-likelihood loss used during training, the models can ignore low-confidence outliers. While our approach does not demonstrate a benefit for extrapolation to novel structures, we expect our denoising and visualization pipeline to be useful in identifying structure-activity trends and highly enriched pharmacophores in DEL data. Further, this approach to uncertainty-aware regression modeling is applicable to other sparse or noisy datasets where the nature of stochasticity is known or can be modeled; in particular, the Poisson enrichment ratio metric we use can apply to other settings that compare sequencing count data between two experimental conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
aibing完成签到,获得积分10
1秒前
KrisTina发布了新的文献求助10
1秒前
宇文老九发布了新的文献求助100
1秒前
随心发布了新的文献求助10
1秒前
YY发布了新的文献求助10
1秒前
2秒前
学术混子完成签到 ,获得积分10
2秒前
2秒前
2秒前
2秒前
3秒前
4秒前
4秒前
聪明的安珊关注了科研通微信公众号
5秒前
jhw发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
6秒前
lindollar发布了新的文献求助10
7秒前
幸福墨镜发布了新的文献求助10
7秒前
科研通AI6.1应助夕荀采纳,获得10
7秒前
old赵发布了新的文献求助10
8秒前
丘比特应助之昂采纳,获得10
8秒前
田様应助Aiuuu采纳,获得10
8秒前
qwert发布了新的文献求助10
8秒前
lxy发布了新的文献求助30
9秒前
Qinpy发布了新的文献求助10
10秒前
orixero应助YY采纳,获得10
10秒前
名丿完成签到,获得积分10
10秒前
龙海完成签到 ,获得积分10
10秒前
11秒前
11秒前
波斯菊完成签到,获得积分20
12秒前
13秒前
13秒前
Owen应助酒洲采纳,获得10
14秒前
歪歪完成签到,获得积分10
15秒前
一期一会完成签到,获得积分10
15秒前
xzy998发布了新的文献求助50
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784182
求助须知:如何正确求助?哪些是违规求助? 5681297
关于积分的说明 15463418
捐赠科研通 4913491
什么是DOI,文献DOI怎么找? 2644676
邀请新用户注册赠送积分活动 1592532
关于科研通互助平台的介绍 1547112