Machine Learning on DNA-Encoded Library Count Data Using an Uncertainty-Aware Probabilistic Loss Function

计算机科学 功能(生物学) 机器学习 数据挖掘 人工智能 概率逻辑 计算生物学 计数数据 统计 生物 数学 遗传学 泊松分布
作者
Katherine S. Lim,Andrew G. Reidenbach,Bruce K. Hua,Jeremy W. Mason,Christopher J. Gerry,Paul A. Clemons,Connor W. Coley
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (10): 2316-2331 被引量:28
标识
DOI:10.1021/acs.jcim.2c00041
摘要

DNA-encoded library (DEL) screening and quantitative structure-activity relationship (QSAR) modeling are two techniques used in drug discovery to find novel small molecules that bind a protein target. Applying QSAR modeling to DEL selection data can facilitate the selection of compounds for off-DNA synthesis and evaluation. Such a combined approach has been done recently by training binary classifiers to learn DEL enrichments of aggregated "disynthons" in order to accommodate the sparse and noisy nature of DEL data. However, a binary classification model cannot distinguish between different levels of enrichment, and information is potentially lost during disynthon aggregation. Here, we demonstrate a regression approach to learning DEL enrichments of individual molecules, using a custom negative-log-likelihood loss function that effectively denoises DEL data and introduces opportunities for visualization of learned structure-activity relationships. Our approach explicitly models the Poisson statistics of the sequencing process used in the DEL experimental workflow under a frequentist view. We illustrate this approach on a DEL dataset of 108,528 compounds screened against carbonic anhydrase (CAIX), and a dataset of 5,655,000 compounds screened against soluble epoxide hydrolase (sEH) and SIRT2. Due to the treatment of uncertainty in the data through the negative-log-likelihood loss used during training, the models can ignore low-confidence outliers. While our approach does not demonstrate a benefit for extrapolation to novel structures, we expect our denoising and visualization pipeline to be useful in identifying structure-activity trends and highly enriched pharmacophores in DEL data. Further, this approach to uncertainty-aware regression modeling is applicable to other sparse or noisy datasets where the nature of stochasticity is known or can be modeled; in particular, the Poisson enrichment ratio metric we use can apply to other settings that compare sequencing count data between two experimental conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
草莓布丁应助千互采纳,获得10
刚刚
wang完成签到 ,获得积分10
1秒前
伶俐的万天完成签到,获得积分10
1秒前
延边棒子完成签到,获得积分20
1秒前
正直听白完成签到,获得积分10
2秒前
FashionBoy应助咻咻采纳,获得10
2秒前
简单的易绿完成签到,获得积分10
3秒前
852应助liweb采纳,获得10
3秒前
6秒前
王佳怡完成签到,获得积分10
6秒前
7秒前
今后应助咻咻采纳,获得10
7秒前
852应助shinn采纳,获得10
9秒前
9秒前
121完成签到,获得积分10
9秒前
汉堡包应助sun采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
10秒前
优美茹妖完成签到,获得积分10
10秒前
11秒前
郭子仪完成签到,获得积分10
12秒前
小伏发布了新的文献求助30
13秒前
Felix完成签到,获得积分10
14秒前
horry完成签到,获得积分10
14秒前
大模型应助感动的嚓茶采纳,获得10
14秒前
么椰咩发布了新的文献求助10
14秒前
Akim应助咻咻采纳,获得10
15秒前
倩倩发布了新的文献求助10
16秒前
洁净的元蝶完成签到,获得积分20
18秒前
华仔应助crazyrock采纳,获得10
18秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
KAOKAO完成签到,获得积分10
20秒前
娜美完成签到,获得积分10
21秒前
花花发布了新的文献求助10
22秒前
苏楠完成签到 ,获得积分10
23秒前
么椰咩完成签到,获得积分10
23秒前
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5775161
求助须知:如何正确求助?哪些是违规求助? 5622242
关于积分的说明 15437861
捐赠科研通 4907500
什么是DOI,文献DOI怎么找? 2640726
邀请新用户注册赠送积分活动 1588600
关于科研通互助平台的介绍 1543497