Machine Learning on DNA-Encoded Library Count Data Using an Uncertainty-Aware Probabilistic Loss Function

计算机科学 功能(生物学) 机器学习 数据挖掘 人工智能 概率逻辑 计算生物学 计数数据 统计 生物 数学 遗传学 泊松分布
作者
Katherine S. Lim,Andrew G. Reidenbach,Bruce K. Hua,Jeremy W. Mason,Christopher J. Gerry,Paul A. Clemons,Connor W. Coley
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (10): 2316-2331 被引量:28
标识
DOI:10.1021/acs.jcim.2c00041
摘要

DNA-encoded library (DEL) screening and quantitative structure-activity relationship (QSAR) modeling are two techniques used in drug discovery to find novel small molecules that bind a protein target. Applying QSAR modeling to DEL selection data can facilitate the selection of compounds for off-DNA synthesis and evaluation. Such a combined approach has been done recently by training binary classifiers to learn DEL enrichments of aggregated "disynthons" in order to accommodate the sparse and noisy nature of DEL data. However, a binary classification model cannot distinguish between different levels of enrichment, and information is potentially lost during disynthon aggregation. Here, we demonstrate a regression approach to learning DEL enrichments of individual molecules, using a custom negative-log-likelihood loss function that effectively denoises DEL data and introduces opportunities for visualization of learned structure-activity relationships. Our approach explicitly models the Poisson statistics of the sequencing process used in the DEL experimental workflow under a frequentist view. We illustrate this approach on a DEL dataset of 108,528 compounds screened against carbonic anhydrase (CAIX), and a dataset of 5,655,000 compounds screened against soluble epoxide hydrolase (sEH) and SIRT2. Due to the treatment of uncertainty in the data through the negative-log-likelihood loss used during training, the models can ignore low-confidence outliers. While our approach does not demonstrate a benefit for extrapolation to novel structures, we expect our denoising and visualization pipeline to be useful in identifying structure-activity trends and highly enriched pharmacophores in DEL data. Further, this approach to uncertainty-aware regression modeling is applicable to other sparse or noisy datasets where the nature of stochasticity is known or can be modeled; in particular, the Poisson enrichment ratio metric we use can apply to other settings that compare sequencing count data between two experimental conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
彩色短靴完成签到,获得积分10
1秒前
8R60d8应助木木木采纳,获得10
1秒前
2秒前
Orange应助语音与采纳,获得10
3秒前
3秒前
萧萧发布了新的文献求助10
3秒前
李爱国应助窝恁叠采纳,获得10
4秒前
传奇3应助冬虫夏草采纳,获得10
6秒前
orixero应助唐泽雪穗采纳,获得40
6秒前
111发布了新的文献求助10
7秒前
8秒前
whoknowsname发布了新的文献求助10
8秒前
123完成签到,获得积分10
8秒前
11秒前
11秒前
hob发布了新的文献求助10
12秒前
bbj发布了新的文献求助30
12秒前
12秒前
顾矜应助li采纳,获得10
12秒前
berkelerey12138完成签到,获得积分10
13秒前
不安青牛应助木木木采纳,获得10
14秒前
14秒前
wang完成签到,获得积分20
14秒前
Joanna完成签到,获得积分10
14秒前
无足鸟发布了新的文献求助10
15秒前
orixero应助wellme采纳,获得10
16秒前
Khaleassi发布了新的文献求助30
17秒前
wang发布了新的文献求助10
18秒前
18秒前
18秒前
Da关闭了Da文献求助
19秒前
可爱的函函应助lycoris采纳,获得10
20秒前
20秒前
aefs发布了新的文献求助10
21秒前
FashionBoy应助烟火橙橙采纳,获得10
22秒前
无足鸟完成签到,获得积分10
23秒前
Wangxuexin完成签到,获得积分10
23秒前
浮游应助bbj采纳,获得10
23秒前
Akim应助bbj采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4538024
求助须知:如何正确求助?哪些是违规求助? 3972771
关于积分的说明 12306684
捐赠科研通 3639502
什么是DOI,文献DOI怎么找? 2003922
邀请新用户注册赠送积分活动 1039325
科研通“疑难数据库(出版商)”最低求助积分说明 928666