Machine Learning on DNA-Encoded Library Count Data Using an Uncertainty-Aware Probabilistic Loss Function

计算机科学 功能(生物学) 机器学习 数据挖掘 人工智能 概率逻辑 计算生物学 计数数据 统计 生物 数学 遗传学 泊松分布
作者
Katherine S. Lim,Andrew G. Reidenbach,Bruce K. Hua,Jeremy W. Mason,Christopher J. Gerry,Paul A. Clemons,Connor W. Coley
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (10): 2316-2331 被引量:28
标识
DOI:10.1021/acs.jcim.2c00041
摘要

DNA-encoded library (DEL) screening and quantitative structure-activity relationship (QSAR) modeling are two techniques used in drug discovery to find novel small molecules that bind a protein target. Applying QSAR modeling to DEL selection data can facilitate the selection of compounds for off-DNA synthesis and evaluation. Such a combined approach has been done recently by training binary classifiers to learn DEL enrichments of aggregated "disynthons" in order to accommodate the sparse and noisy nature of DEL data. However, a binary classification model cannot distinguish between different levels of enrichment, and information is potentially lost during disynthon aggregation. Here, we demonstrate a regression approach to learning DEL enrichments of individual molecules, using a custom negative-log-likelihood loss function that effectively denoises DEL data and introduces opportunities for visualization of learned structure-activity relationships. Our approach explicitly models the Poisson statistics of the sequencing process used in the DEL experimental workflow under a frequentist view. We illustrate this approach on a DEL dataset of 108,528 compounds screened against carbonic anhydrase (CAIX), and a dataset of 5,655,000 compounds screened against soluble epoxide hydrolase (sEH) and SIRT2. Due to the treatment of uncertainty in the data through the negative-log-likelihood loss used during training, the models can ignore low-confidence outliers. While our approach does not demonstrate a benefit for extrapolation to novel structures, we expect our denoising and visualization pipeline to be useful in identifying structure-activity trends and highly enriched pharmacophores in DEL data. Further, this approach to uncertainty-aware regression modeling is applicable to other sparse or noisy datasets where the nature of stochasticity is known or can be modeled; in particular, the Poisson enrichment ratio metric we use can apply to other settings that compare sequencing count data between two experimental conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超帅从彤完成签到,获得积分10
1秒前
1秒前
chen完成签到,获得积分20
1秒前
Orange应助zpp采纳,获得10
2秒前
Sphere完成签到,获得积分10
2秒前
Re发布了新的文献求助10
2秒前
赵yy应助子清采纳,获得10
2秒前
清新的问枫完成签到,获得积分10
3秒前
3秒前
ZJR发布了新的文献求助100
3秒前
Kaleem发布了新的文献求助10
3秒前
3秒前
MoPunk发布了新的文献求助10
3秒前
FashionBoy应助林狗采纳,获得10
4秒前
6秒前
三分发布了新的文献求助10
6秒前
6秒前
adjakd完成签到,获得积分10
8秒前
PSCs发布了新的文献求助10
9秒前
香蕉觅云应助忧虑的灵安采纳,获得10
9秒前
LXH发布了新的文献求助10
10秒前
超超完成签到,获得积分10
11秒前
等待尔安完成签到,获得积分10
12秒前
12秒前
13秒前
英俊的铭应助酷猫采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
问题多多发布了新的文献求助100
14秒前
15秒前
linlin完成签到,获得积分10
16秒前
PSCs完成签到,获得积分10
16秒前
张小哥12发布了新的文献求助10
17秒前
危机的雍完成签到 ,获得积分10
17秒前
18秒前
江河湖库考试辅导完成签到,获得积分10
18秒前
sakura完成签到,获得积分10
18秒前
依依发布了新的文献求助10
19秒前
19秒前
彩色的芝麻完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424481
求助须知:如何正确求助?哪些是违规求助? 4538810
关于积分的说明 14163993
捐赠科研通 4455806
什么是DOI,文献DOI怎么找? 2443899
邀请新用户注册赠送积分活动 1435026
关于科研通互助平台的介绍 1412337