Noninvasive detection of COPD and Lung Cancer through breath analysis using MOS Sensor array based e-nose

鼻子 医学 肺病 电子鼻 气体分析呼吸 肺癌 传感器阵列 支持向量机 慢性阻塞性肺病 内科学 病理 外科 人工智能 计算机科学 机器学习 解剖
作者
V A Binson,M. Subramoniam,Luke Mathew
出处
期刊:Expert Review of Molecular Diagnostics [Taylor & Francis]
卷期号:21 (11): 1223-1233 被引量:39
标识
DOI:10.1080/14737159.2021.1971079
摘要

This paper describes the research work done toward the development of a breath analyzing electronic nose (e-nose), and the results obtained from testing patients with lung cancer, patients with chronic obstructive pulmonary disease (COPD), and healthy controls. Pulmonary diseases like COPD and lung cancer are detected with MOS sensor array-based e-noses. The e-nose device with the sensor array, data acquisition system, and pattern recognition can detect the variations of volatile organic compounds (VOC) present in the expelled breath of patients and healthy controls.This work presents the e-nose equipment design, study subjects selection, breath sampling procedures, and various data analysis tools. The developed e-nose system is tested in 40 patients with lung cancer, 48 patients with COPD, and 90 healthy controls.In differentiating lung cancer and COPD from controls, support vector machine (SVM) with 3-fold cross-validation outperformed all other classifiers with an accuracy of 92.3% in cross-validation. In external validation, the same discrimination was achieved by k-nearest neighbors (k-NN) with 75.0% accuracy.The reported results show that the VOC analysis with an e-nose system holds exceptional possibilities in noninvasive disease diagnosis applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助Alvin采纳,获得10
1秒前
量子星尘发布了新的文献求助30
2秒前
Liziwei发布了新的文献求助10
4秒前
4秒前
bkagyin应助王若欣采纳,获得10
4秒前
4秒前
Ran完成签到 ,获得积分10
4秒前
7秒前
8秒前
可爱的函函应助hxj采纳,获得10
9秒前
9秒前
11秒前
Akim应助素笺生花采纳,获得10
11秒前
wudi19887发布了新的文献求助10
12秒前
深情的热狗完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
liuyunhao7207发布了新的文献求助10
15秒前
17秒前
柳叶刀完成签到,获得积分10
17秒前
共享精神应助崔崔采纳,获得10
18秒前
19秒前
22秒前
科研通AI2S应助alvin采纳,获得10
22秒前
Kevin63完成签到,获得积分10
23秒前
liuyunhao7207完成签到,获得积分10
23秒前
李健的小迷弟应助lcj1014采纳,获得10
23秒前
王若欣完成签到,获得积分10
24秒前
晴天完成签到,获得积分10
24秒前
25秒前
齐半青完成签到,获得积分10
25秒前
精明凡双发布了新的文献求助200
25秒前
27秒前
过时的不评完成签到,获得积分10
28秒前
30秒前
luo完成签到 ,获得积分10
30秒前
倾城完成签到,获得积分10
30秒前
花园种菜宝宝关注了科研通微信公众号
31秒前
wanghuan完成签到,获得积分10
31秒前
34秒前
Catalina_S应助wenshuo采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4586386
求助须知:如何正确求助?哪些是违规求助? 4002819
关于积分的说明 12391220
捐赠科研通 3678978
什么是DOI,文献DOI怎么找? 2027763
邀请新用户注册赠送积分活动 1061227
科研通“疑难数据库(出版商)”最低求助积分说明 947598