A Novel Approach to Automated 3D Spalling Defects Inspection in Railway Tunnel Linings Using Laser Intensity and Depth Information

剥落 强度(物理) 计算机科学 激光扫描 结构工程 计算机视觉 工程类 人工智能 激光器 光学 物理
作者
Mingliang Zhou,Wen Cheng,Hongwei Huang,Jiayao Chen
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:21 (17): 5725-5725 被引量:23
标识
DOI:10.3390/s21175725
摘要

The detection of concrete spalling is critical for tunnel inspectors to assess structural risks and guarantee the daily operation of the railway tunnel. However, traditional spalling detection methods mostly rely on visual inspection or camera images taken manually, which are inefficient and unreliable. In this study, an integrated approach based on laser intensity and depth features is proposed for the automated detection and quantification of concrete spalling. The Railway Tunnel Spalling Defects (RTSD) database, containing intensity images and depth images of the tunnel linings, is established via mobile laser scanning (MLS), and the Spalling Intensity Depurator Network (SIDNet) model is proposed for automatic extraction of the concrete spalling features. The proposed model is trained, validated and tested on the established RSTD dataset with impressive results. Comparison with several other spalling detection models shows that the proposed model performs better in terms of various indicators such as MPA (0.985) and MIoU (0.925). The extra depth information obtained from MLS allows for the accurate evaluation of the volume of detected spalling defects, which is beyond the reach of traditional methods. In addition, a triangulation mesh method is implemented to reconstruct the 3D tunnel lining model and visualize the 3D inspection results. As a result, a 3D inspection report can be outputted automatically containing quantified spalling defect information along with relevant spatial coordinates. The proposed approach has been conducted on several railway tunnels in Yunnan province, China and the experimental results have proved its validity and feasibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周舟完成签到 ,获得积分10
刚刚
V_I_G完成签到 ,获得积分10
1秒前
nick完成签到,获得积分10
2秒前
高高高完成签到 ,获得积分10
5秒前
彪壮的亦瑶完成签到 ,获得积分10
6秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
Perry应助科研通管家采纳,获得60
8秒前
Akim应助科研通管家采纳,获得10
8秒前
鱼雷完成签到,获得积分10
9秒前
廿伊发布了新的文献求助10
11秒前
我是125完成签到,获得积分10
13秒前
依人如梦完成签到 ,获得积分10
14秒前
15秒前
PDIF-CN2完成签到,获得积分10
19秒前
雪雪完成签到 ,获得积分10
20秒前
21秒前
Willow完成签到,获得积分10
24秒前
研研研完成签到,获得积分10
25秒前
大橙子发布了新的文献求助10
27秒前
dejiangcj完成签到 ,获得积分10
28秒前
无味完成签到,获得积分10
29秒前
大气的尔蓝完成签到,获得积分10
30秒前
科研通AI5应助普鲁卡因采纳,获得10
31秒前
略略略完成签到 ,获得积分10
33秒前
zqlxueli完成签到 ,获得积分10
37秒前
无语的断缘完成签到,获得积分10
39秒前
hdx完成签到 ,获得积分10
40秒前
健壮的涑完成签到 ,获得积分10
41秒前
量子星尘发布了新的文献求助10
45秒前
普鲁卡因发布了新的文献求助10
45秒前
高大绝义完成签到,获得积分10
47秒前
49秒前
黄超超发布了新的文献求助10
50秒前
ZEcholy完成签到 ,获得积分20
50秒前
大橙子发布了新的文献求助10
51秒前
小幸运完成签到,获得积分10
53秒前
淡然一德完成签到,获得积分10
56秒前
咖啡豆完成签到 ,获得积分10
57秒前
58秒前
龙猫爱看书完成签到,获得积分10
58秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038128
求助须知:如何正确求助?哪些是违规求助? 3575831
关于积分的说明 11373827
捐赠科研通 3305610
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022