A Novel Approach to Automated 3D Spalling Defects Inspection in Railway Tunnel Linings Using Laser Intensity and Depth Information

剥落 强度(物理) 计算机科学 激光扫描 结构工程 计算机视觉 工程类 人工智能 激光器 光学 物理
作者
Mingliang Zhou,Wen Cheng,Hongwei Huang,Jiayao Chen
出处
期刊:Sensors [MDPI AG]
卷期号:21 (17): 5725-5725 被引量:23
标识
DOI:10.3390/s21175725
摘要

The detection of concrete spalling is critical for tunnel inspectors to assess structural risks and guarantee the daily operation of the railway tunnel. However, traditional spalling detection methods mostly rely on visual inspection or camera images taken manually, which are inefficient and unreliable. In this study, an integrated approach based on laser intensity and depth features is proposed for the automated detection and quantification of concrete spalling. The Railway Tunnel Spalling Defects (RTSD) database, containing intensity images and depth images of the tunnel linings, is established via mobile laser scanning (MLS), and the Spalling Intensity Depurator Network (SIDNet) model is proposed for automatic extraction of the concrete spalling features. The proposed model is trained, validated and tested on the established RSTD dataset with impressive results. Comparison with several other spalling detection models shows that the proposed model performs better in terms of various indicators such as MPA (0.985) and MIoU (0.925). The extra depth information obtained from MLS allows for the accurate evaluation of the volume of detected spalling defects, which is beyond the reach of traditional methods. In addition, a triangulation mesh method is implemented to reconstruct the 3D tunnel lining model and visualize the 3D inspection results. As a result, a 3D inspection report can be outputted automatically containing quantified spalling defect information along with relevant spatial coordinates. The proposed approach has been conducted on several railway tunnels in Yunnan province, China and the experimental results have proved its validity and feasibility.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
刚刚
海绵宝宝完成签到,获得积分10
刚刚
jbq完成签到,获得积分10
1秒前
wangwang完成签到,获得积分10
1秒前
站在冰箱上完成签到,获得积分10
1秒前
飞快的邴完成签到,获得积分10
1秒前
Jiojio完成签到,获得积分10
1秒前
咎淇完成签到,获得积分10
1秒前
兰金完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
Zn中毒完成签到,获得积分10
3秒前
Guomin完成签到,获得积分10
4秒前
天天快乐应助L7.采纳,获得10
4秒前
yuantao完成签到,获得积分10
4秒前
科研通AI6应助Richardxuuu采纳,获得10
4秒前
shao发布了新的文献求助10
4秒前
RadiantYT完成签到,获得积分10
4秒前
熟睡的妻子完成签到,获得积分10
4秒前
苗条元柏完成签到,获得积分10
5秒前
CA274ABTFY完成签到,获得积分10
5秒前
5秒前
Robin95完成签到 ,获得积分10
5秒前
5秒前
Dr_Zhan完成签到 ,获得积分10
6秒前
6秒前
lqiqiqir完成签到,获得积分10
6秒前
科研通AI6应助俭朴士晋采纳,获得10
7秒前
时尚的菠萝完成签到,获得积分10
7秒前
aixuexi*完成签到,获得积分10
8秒前
michael发布了新的文献求助10
8秒前
feihua1完成签到 ,获得积分10
8秒前
端庄的寄凡完成签到 ,获得积分10
8秒前
chxxy发布了新的文献求助30
8秒前
欧耶欧椰完成签到 ,获得积分10
9秒前
Ma完成签到,获得积分10
9秒前
lqiqiqir发布了新的文献求助10
10秒前
abc123完成签到,获得积分10
10秒前
1111完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645277
求助须知:如何正确求助?哪些是违规求助? 4768340
关于积分的说明 15027650
捐赠科研通 4803859
什么是DOI,文献DOI怎么找? 2568523
邀请新用户注册赠送积分活动 1525813
关于科研通互助平台的介绍 1485484