清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Novel Approach to Automated 3D Spalling Defects Inspection in Railway Tunnel Linings Using Laser Intensity and Depth Information

剥落 强度(物理) 计算机科学 激光扫描 结构工程 计算机视觉 工程类 人工智能 激光器 光学 物理
作者
Mingliang Zhou,Wen Cheng,Hongwei Huang,Jiayao Chen
出处
期刊:Sensors [MDPI AG]
卷期号:21 (17): 5725-5725 被引量:23
标识
DOI:10.3390/s21175725
摘要

The detection of concrete spalling is critical for tunnel inspectors to assess structural risks and guarantee the daily operation of the railway tunnel. However, traditional spalling detection methods mostly rely on visual inspection or camera images taken manually, which are inefficient and unreliable. In this study, an integrated approach based on laser intensity and depth features is proposed for the automated detection and quantification of concrete spalling. The Railway Tunnel Spalling Defects (RTSD) database, containing intensity images and depth images of the tunnel linings, is established via mobile laser scanning (MLS), and the Spalling Intensity Depurator Network (SIDNet) model is proposed for automatic extraction of the concrete spalling features. The proposed model is trained, validated and tested on the established RSTD dataset with impressive results. Comparison with several other spalling detection models shows that the proposed model performs better in terms of various indicators such as MPA (0.985) and MIoU (0.925). The extra depth information obtained from MLS allows for the accurate evaluation of the volume of detected spalling defects, which is beyond the reach of traditional methods. In addition, a triangulation mesh method is implemented to reconstruct the 3D tunnel lining model and visualize the 3D inspection results. As a result, a 3D inspection report can be outputted automatically containing quantified spalling defect information along with relevant spatial coordinates. The proposed approach has been conducted on several railway tunnels in Yunnan province, China and the experimental results have proved its validity and feasibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Polymer72发布了新的文献求助30
1秒前
5秒前
cy0824完成签到 ,获得积分10
9秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
丘比特应助Polymer72采纳,获得30
27秒前
HH1202完成签到 ,获得积分10
46秒前
bdsb完成签到,获得积分10
47秒前
Sherme完成签到 ,获得积分10
56秒前
a46539749完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
krajicek发布了新的文献求助30
1分钟前
脑洞疼应助JLLi采纳,获得10
1分钟前
1分钟前
Polymer72发布了新的文献求助30
2分钟前
完美世界应助Polymer72采纳,获得30
2分钟前
2分钟前
2分钟前
jyy发布了新的文献求助10
3分钟前
meijuan1210完成签到 ,获得积分10
3分钟前
zhangzhangzhang完成签到 ,获得积分10
3分钟前
3分钟前
JLLi发布了新的文献求助10
3分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
优秀剑愁完成签到 ,获得积分10
4分钟前
wyh295352318完成签到 ,获得积分10
4分钟前
4分钟前
zijingsy完成签到 ,获得积分10
5分钟前
huajanve发布了新的文献求助30
5分钟前
5分钟前
5分钟前
Polymer72发布了新的文献求助30
5分钟前
wx1完成签到 ,获得积分0
5分钟前
大个应助Polymer72采纳,获得30
5分钟前
woxinyouyou完成签到,获得积分0
5分钟前
kuyi完成签到 ,获得积分10
5分钟前
MS903完成签到 ,获得积分10
6分钟前
爱静静应助雪山飞龙采纳,获得10
6分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3335433
求助须知:如何正确求助?哪些是违规求助? 2964514
关于积分的说明 8614189
捐赠科研通 2643413
什么是DOI,文献DOI怎么找? 1447431
科研通“疑难数据库(出版商)”最低求助积分说明 670630
邀请新用户注册赠送积分活动 658993