铁磁性
凝聚态物理
垂直的
不对称
自旋电子学
对称(几何)
领域(数学)
磁场
磁化
物理
材料科学
铁磁性
几何学
量子力学
数学
纯数学
作者
Zhenyi Zheng,Yue Zhang,Víctor López‐Domínguez,Luis Sánchez-Tejerina,Jiacheng Shi,Xueqiang Feng,Lei Chen,Zilu Wang,Zhizhong Zhang,Kun Zhang,Bin Hong,Yong Xu,Youguang Zhang,Mario Carpentieri,A. Fert,Giovanni Finocchio,Weisheng Zhao,Pedram Khalili Amiri
标识
DOI:10.1038/s41467-021-24854-7
摘要
Current-induced spin-orbit torques (SOTs) are of interest for fast and energy-efficient manipulation of magnetic order in spintronic devices. To be deterministic, however, switching of perpendicularly magnetized materials by SOT requires a mechanism for in-plane symmetry breaking. Existing methods to do so involve the application of an in-plane bias magnetic field, or incorporation of in-plane structural asymmetry in the device, both of which can be difficult to implement in practical applications. Here, we report bias-field-free SOT switching in a single perpendicular CoTb layer with an engineered vertical composition gradient. The vertical structural inversion asymmetry induces strong intrinsic SOTs and a gradient-driven Dzyaloshinskii-Moriya interaction (g-DMI), which breaks the in-plane symmetry during the switching process. Micromagnetic simulations are in agreement with experimental results, and elucidate the role of g-DMI in the deterministic switching processes. This bias-field-free switching scheme for perpendicular ferrimagnets with g-DMI provides a strategy for efficient and compact SOT device design.
科研通智能强力驱动
Strongly Powered by AbleSci AI