A Novel Pressure-Controlled Revolute Joint with Variable Stiffness

刚度 扭矩 工程类 机械工程 旋转副 圆柱 计算机科学 控制理论(社会学) 结构工程 物理 人工智能 热力学 控制(管理) 约束(计算机辅助设计)
作者
Canberk Sözer,Linda Paternò,Giuseppe Tortora,Arianna Menciassi
出处
期刊:Soft robotics [Mary Ann Liebert]
卷期号:9 (4): 723-733 被引量:12
标识
DOI:10.1089/soro.2020.0196
摘要

The compliance and deformability of soft robotics allow human–machine interactions in a safe manner without the need of sophisticated control systems inherent in rigid-body robotic devices. However, these advantages introduce controllability and predictability challenges. In this study, we propose a novel fluidic-driven variable stiffness revolute joint (VSRJ) based on hybrid soft-rigid approach to achieve adjustable compliance while addressing the abovementioned challenges. The VSRJ is composed of a silicone rubber cylinder as a pressure chamber and two identical rigid links. The soft cylinder is positioned in a fully closed compartment created by the assembly of the two rigid links, thus constraining its expansion when pressure is applied. By applying pressure, the stiffness of the joint increases accordingly for the following reasons: (1) increasing the friction force between the cylinder and the compartment walls and (2) creating a locking mechanism through the expansion of the cylinder into space between rigid links in a “bump” formation. Experimental results show that the VSRJ can achieve up to 8-fold rotational stiffness enhancement from 0 to 5 bar input pressure within −30° to +30° rotation angle. The modular design of the rigid link allows the assembly of multiple VSRJs to build a variable stiffness structure in which each VSRJ has an independent stiffness and relative position. The VSRJ was characterized in terms of repeatability, torque, and stiffness. The experimental results were validated by finite element analysis. This approach can provide opportunities for the use of this new variable stiffness concept as an efficient alternative to traditional variable-stiffness linkages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
扶我起来写论文完成签到 ,获得积分10
刚刚
d22110652发布了新的文献求助30
1秒前
陈秋完成签到,获得积分10
2秒前
sci_zt完成签到 ,获得积分10
8秒前
chcmy完成签到 ,获得积分0
11秒前
草莓江完成签到 ,获得积分10
11秒前
困困困完成签到 ,获得积分10
15秒前
HH1202完成签到 ,获得积分10
21秒前
CHEN完成签到 ,获得积分10
25秒前
27秒前
钟声完成签到,获得积分0
27秒前
caroline完成签到 ,获得积分10
28秒前
李健应助anlikek采纳,获得10
29秒前
牛奶拌可乐完成签到 ,获得积分10
30秒前
奶茶完成签到 ,获得积分10
32秒前
35秒前
anlikek发布了新的文献求助10
41秒前
佳期如梦完成签到 ,获得积分10
43秒前
Ray完成签到 ,获得积分10
45秒前
ng完成签到 ,获得积分10
46秒前
48秒前
anlikek完成签到,获得积分10
49秒前
Herbs完成签到 ,获得积分10
54秒前
gmc完成签到 ,获得积分10
56秒前
chenbin完成签到,获得积分10
1分钟前
高高的丹雪完成签到 ,获得积分10
1分钟前
陈米花完成签到,获得积分10
1分钟前
yyjl31完成签到,获得积分0
1分钟前
Simon_chat完成签到,获得积分0
1分钟前
1分钟前
小西完成签到 ,获得积分10
1分钟前
吐司炸弹完成签到,获得积分10
1分钟前
mayfly完成签到,获得积分10
1分钟前
1分钟前
klicking完成签到,获得积分10
1分钟前
high cold发布了新的文献求助10
1分钟前
1分钟前
Hiram完成签到,获得积分10
1分钟前
Young完成签到 ,获得积分10
1分钟前
Cold-Drink-Shop完成签到,获得积分10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466840
求助须知:如何正确求助?哪些是违规求助? 3059674
关于积分的说明 9067384
捐赠科研通 2750158
什么是DOI,文献DOI怎么找? 1509066
科研通“疑难数据库(出版商)”最低求助积分说明 697126
邀请新用户注册赠送积分活动 696913