Classification of Chinese Herbal Medicines by deep neural network based on orthogonal design

超参数 判别式 计算机科学 召回率 人工神经网络 人工智能 模式识别(心理学)
作者
Yan Tang,Yan Wang,Jingzhong Li,Weiwei Zhang,Li Wang,Xing Zhai,Aiqing Han
标识
DOI:10.1109/imcec51613.2021.9482214
摘要

Chinese herbal medicines (CHMs) play an important role in the clinical efficacy of TCM. It is necessary to establish an intelligent identification method for CHMs to assist in Chinese medicine dispensing. In the present study, 160 kinds of CHMs were collected from the real world, and an image database containing 44467 pictures was constructed. Based on the L18 (3^6,6^1) hybrid orthogonal table, an orthogonal experiment was carried out on seven influencing factors, namely architecture, learning rate, optimizer, weight decay, batch size, gradual unfreezing, and discriminative fine-tuning. Five-fold cross-validation was used to calculate the accuracy rate, recall rate, and other evaluation indicators, and in this way, the optimal model and hyperparameter combination were screened. It was found that the optimal model was ResNeXt-152. When the batch size was 64, the learning rate was 0.00005, weight decay was 0.0005, gradual unfreezing was 7, discriminative fine-tuning was 3, and optimizer was AdaMax, which was the optimal combination of hyperparameters. At this time, the highest accuracy rate was 95.36%. This shows that deep learning model training based on orthogonal design can reduce the number of experiments while improving classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
赘婿应助Husayn采纳,获得10
2秒前
Akim应助wgr采纳,获得10
2秒前
hanch发布了新的文献求助10
3秒前
3秒前
4秒前
6秒前
pengjiejie发布了新的文献求助10
7秒前
MW完成签到,获得积分10
7秒前
xiaomi完成签到,获得积分10
8秒前
支半雪发布了新的文献求助10
8秒前
9秒前
10秒前
10秒前
毕业比耶发布了新的文献求助10
11秒前
着急的cc完成签到,获得积分10
11秒前
12秒前
30888136发布了新的文献求助10
13秒前
14秒前
希望天下0贩的0应助bruce233采纳,获得10
14秒前
www完成签到 ,获得积分10
14秒前
Jasper应助Leon_nomoreLess采纳,获得10
16秒前
Yumori关注了科研通微信公众号
16秒前
Hello应助33采纳,获得10
16秒前
许鹤缤发布了新的文献求助10
16秒前
郭小燕发布了新的文献求助10
17秒前
hanch完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
21秒前
务实发夹完成签到,获得积分10
21秒前
21秒前
周少发布了新的社区帖子
21秒前
智博36完成签到,获得积分10
23秒前
24秒前
醋溜滑板完成签到 ,获得积分10
24秒前
在水一方应助钱钱钱采纳,获得10
24秒前
Yumori发布了新的文献求助10
26秒前
26秒前
耿教授发布了新的文献求助10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975922
求助须知:如何正确求助?哪些是违规求助? 3520226
关于积分的说明 11201711
捐赠科研通 3256720
什么是DOI,文献DOI怎么找? 1798423
邀请新用户注册赠送积分活动 877576
科研通“疑难数据库(出版商)”最低求助积分说明 806452