亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Classification of Chinese Herbal Medicines by deep neural network based on orthogonal design

超参数 判别式 计算机科学 召回率 人工神经网络 人工智能 模式识别(心理学)
作者
Yan Tang,Yan Wang,Jingzhong Li,Weiwei Zhang,Li Wang,Xing Zhai,Aiqing Han
标识
DOI:10.1109/imcec51613.2021.9482214
摘要

Chinese herbal medicines (CHMs) play an important role in the clinical efficacy of TCM. It is necessary to establish an intelligent identification method for CHMs to assist in Chinese medicine dispensing. In the present study, 160 kinds of CHMs were collected from the real world, and an image database containing 44467 pictures was constructed. Based on the L18 (3^6,6^1) hybrid orthogonal table, an orthogonal experiment was carried out on seven influencing factors, namely architecture, learning rate, optimizer, weight decay, batch size, gradual unfreezing, and discriminative fine-tuning. Five-fold cross-validation was used to calculate the accuracy rate, recall rate, and other evaluation indicators, and in this way, the optimal model and hyperparameter combination were screened. It was found that the optimal model was ResNeXt-152. When the batch size was 64, the learning rate was 0.00005, weight decay was 0.0005, gradual unfreezing was 7, discriminative fine-tuning was 3, and optimizer was AdaMax, which was the optimal combination of hyperparameters. At this time, the highest accuracy rate was 95.36%. This shows that deep learning model training based on orthogonal design can reduce the number of experiments while improving classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
xingsixs完成签到,获得积分10
23秒前
星辰大海应助科研通管家采纳,获得10
1分钟前
1分钟前
邓权发布了新的文献求助10
1分钟前
娇气的幼南完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
生动之云发布了新的文献求助10
1分钟前
2分钟前
2分钟前
美好颜发布了新的文献求助10
2分钟前
2分钟前
大模型应助科研通管家采纳,获得10
3分钟前
小二郎应助科研通管家采纳,获得10
3分钟前
Betty发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
慕青应助lty采纳,获得10
4分钟前
4分钟前
4分钟前
lty发布了新的文献求助10
4分钟前
小岩完成签到 ,获得积分10
4分钟前
4分钟前
咕咕发布了新的文献求助10
4分钟前
彩色黑米完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
AKi233完成签到,获得积分10
5分钟前
AKi233发布了新的文献求助10
5分钟前
充电宝应助AKi233采纳,获得10
5分钟前
咕咕完成签到,获得积分10
5分钟前
FengyaoWang完成签到,获得积分10
5分钟前
6分钟前
传奇3应助科研通管家采纳,获得10
7分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968504
求助须知:如何正确求助?哪些是违规求助? 3513278
关于积分的说明 11167234
捐赠科研通 3248660
什么是DOI,文献DOI怎么找? 1794386
邀请新用户注册赠送积分活动 875030
科研通“疑难数据库(出版商)”最低求助积分说明 804638