亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Segmentation of the Prostate Transition Zone and Peripheral Zone on MR Images with Deep Learning

四分位间距 Sørensen–骰子系数 分割 前列腺 前列腺活检 皮尔逊积矩相关系数 医学 人工智能 数据集 图像分割 核医学 计算机科学 数学 外科 内科学 统计 癌症
作者
Michelle Bardis,Roozbeh Houshyar,Chanon Chantaduly,Karen Tran-Harding,Alexander Ushinsky,Chantal Chahine,Mark Rupasinghe,Daniel Chow,Peter Chang
出处
期刊:Radiology 卷期号:3 (3): e200024-e200024 被引量:46
标识
DOI:10.1148/rycan.2021200024
摘要

Purpose To develop a deep learning model to delineate the transition zone (TZ) and peripheral zone (PZ) of the prostate on MR images. Materials and Methods This retrospective study was composed of patients who underwent a multiparametric prostate MRI and an MRI/transrectal US fusion biopsy between January 2013 and May 2016. A board-certified abdominal radiologist manually segmented the prostate, TZ, and PZ on the entire data set. Included accessions were split into 60% training, 20% validation, and 20% test data sets for model development. Three convolutional neural networks with a U-Net architecture were trained for automatic recognition of the prostate organ, TZ, and PZ. Model performance for segmentation was assessed using Dice scores and Pearson correlation coefficients. Results A total of 242 patients were included (242 MR images; 6292 total images). Models for prostate organ segmentation, TZ segmentation, and PZ segmentation were trained and validated. Using the test data set, for prostate organ segmentation, the mean Dice score was 0.940 (interquartile range, 0.930–0.961), and the Pearson correlation coefficient for volume was 0.981 (95% CI: 0.966, 0.989). For TZ segmentation, the mean Dice score was 0.910 (interquartile range, 0.894–0.938), and the Pearson correlation coefficient for volume was 0.992 (95% CI: 0.985, 0.995). For PZ segmentation, the mean Dice score was 0.774 (interquartile range, 0.727–0.832), and the Pearson correlation coefficient for volume was 0.927 (95% CI: 0.870, 0.957). Conclusion Deep learning with an architecture composed of three U-Nets can accurately segment the prostate, TZ, and PZ. Keywords: MRI, Genital/Reproductive, Prostate, Neural Networks Supplemental material is available for this article. © RSNA, 2021
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李志全完成签到 ,获得积分10
1秒前
8秒前
19秒前
量子星尘发布了新的文献求助10
21秒前
AliEmbark完成签到,获得积分10
27秒前
29秒前
搞怪的白云完成签到 ,获得积分10
58秒前
Zhaowx完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
XMH发布了新的文献求助30
1分钟前
lelele发布了新的文献求助10
1分钟前
lelele完成签到,获得积分20
2分钟前
XMH完成签到,获得积分10
2分钟前
2分钟前
2分钟前
坦呐发布了新的文献求助10
3分钟前
嘻嘻完成签到,获得积分10
3分钟前
4分钟前
4分钟前
张艳鑫发布了新的文献求助10
5分钟前
科研通AI6应助张艳鑫采纳,获得10
5分钟前
5分钟前
6分钟前
所所应助苹果诗珊采纳,获得10
7分钟前
人类后腿完成签到,获得积分20
8分钟前
好运常在完成签到 ,获得积分10
8分钟前
科研通AI6应助坦呐采纳,获得10
8分钟前
8分钟前
瑶瑶完成签到,获得积分10
8分钟前
呜呼发布了新的文献求助10
8分钟前
Criminology34应助瑶瑶采纳,获得20
8分钟前
科研通AI6应助科研通管家采纳,获得10
9分钟前
华仔应助呜呼采纳,获得10
9分钟前
9分钟前
科目三应助yy采纳,获得10
9分钟前
9分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5245461
求助须知:如何正确求助?哪些是违规求助? 4410876
关于积分的说明 13728788
捐赠科研通 4281172
什么是DOI,文献DOI怎么找? 2348995
邀请新用户注册赠送积分活动 1346099
关于科研通互助平台的介绍 1304924