Segmentation of the Prostate Transition Zone and Peripheral Zone on MR Images with Deep Learning

四分位间距 Sørensen–骰子系数 分割 前列腺 前列腺活检 皮尔逊积矩相关系数 医学 人工智能 数据集 图像分割 核医学 计算机科学 数学 外科 内科学 统计 癌症
作者
Michelle Bardis,Roozbeh Houshyar,Chanon Chantaduly,Karen Tran-Harding,Alexander Ushinsky,Chantal Chahine,Mark Rupasinghe,Daniel Chow,Peter Chang
出处
期刊:Radiology 卷期号:3 (3): e200024-e200024 被引量:46
标识
DOI:10.1148/rycan.2021200024
摘要

Purpose To develop a deep learning model to delineate the transition zone (TZ) and peripheral zone (PZ) of the prostate on MR images. Materials and Methods This retrospective study was composed of patients who underwent a multiparametric prostate MRI and an MRI/transrectal US fusion biopsy between January 2013 and May 2016. A board-certified abdominal radiologist manually segmented the prostate, TZ, and PZ on the entire data set. Included accessions were split into 60% training, 20% validation, and 20% test data sets for model development. Three convolutional neural networks with a U-Net architecture were trained for automatic recognition of the prostate organ, TZ, and PZ. Model performance for segmentation was assessed using Dice scores and Pearson correlation coefficients. Results A total of 242 patients were included (242 MR images; 6292 total images). Models for prostate organ segmentation, TZ segmentation, and PZ segmentation were trained and validated. Using the test data set, for prostate organ segmentation, the mean Dice score was 0.940 (interquartile range, 0.930–0.961), and the Pearson correlation coefficient for volume was 0.981 (95% CI: 0.966, 0.989). For TZ segmentation, the mean Dice score was 0.910 (interquartile range, 0.894–0.938), and the Pearson correlation coefficient for volume was 0.992 (95% CI: 0.985, 0.995). For PZ segmentation, the mean Dice score was 0.774 (interquartile range, 0.727–0.832), and the Pearson correlation coefficient for volume was 0.927 (95% CI: 0.870, 0.957). Conclusion Deep learning with an architecture composed of three U-Nets can accurately segment the prostate, TZ, and PZ. Keywords: MRI, Genital/Reproductive, Prostate, Neural Networks Supplemental material is available for this article. © RSNA, 2021
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mookie发布了新的文献求助10
刚刚
宋启文完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
yurunxintian完成签到,获得积分10
1秒前
稳如老狗发布了新的文献求助10
1秒前
1秒前
太牛的GGB发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
12345完成签到,获得积分10
3秒前
落寞灵安发布了新的文献求助10
3秒前
卢玥沅发布了新的文献求助10
3秒前
Gwinn发布了新的文献求助10
4秒前
慢羊羊发布了新的文献求助10
4秒前
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
4秒前
宋启文发布了新的文献求助10
4秒前
mtt应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
27发布了新的文献求助10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
wg发布了新的文献求助10
5秒前
子车茗应助科研通管家采纳,获得20
5秒前
orixero应助科研通管家采纳,获得10
5秒前
amanda应助科研通管家采纳,获得20
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
子车茗应助科研通管家采纳,获得20
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4933396
求助须知:如何正确求助?哪些是违规求助? 4201613
关于积分的说明 13054063
捐赠科研通 3975660
什么是DOI,文献DOI怎么找? 2178529
邀请新用户注册赠送积分活动 1194810
关于科研通互助平台的介绍 1106200