Segmentation of the Prostate Transition Zone and Peripheral Zone on MR Images with Deep Learning

四分位间距 Sørensen–骰子系数 分割 前列腺 前列腺活检 皮尔逊积矩相关系数 医学 人工智能 数据集 图像分割 核医学 计算机科学 数学 外科 内科学 统计 癌症
作者
Michelle Bardis,Roozbeh Houshyar,Chanon Chantaduly,Karen Tran-Harding,Alexander Ushinsky,Chantal Chahine,Mark Rupasinghe,Daniel Chow,Peter Chang
出处
期刊:Radiology 卷期号:3 (3): e200024-e200024 被引量:46
标识
DOI:10.1148/rycan.2021200024
摘要

Purpose To develop a deep learning model to delineate the transition zone (TZ) and peripheral zone (PZ) of the prostate on MR images. Materials and Methods This retrospective study was composed of patients who underwent a multiparametric prostate MRI and an MRI/transrectal US fusion biopsy between January 2013 and May 2016. A board-certified abdominal radiologist manually segmented the prostate, TZ, and PZ on the entire data set. Included accessions were split into 60% training, 20% validation, and 20% test data sets for model development. Three convolutional neural networks with a U-Net architecture were trained for automatic recognition of the prostate organ, TZ, and PZ. Model performance for segmentation was assessed using Dice scores and Pearson correlation coefficients. Results A total of 242 patients were included (242 MR images; 6292 total images). Models for prostate organ segmentation, TZ segmentation, and PZ segmentation were trained and validated. Using the test data set, for prostate organ segmentation, the mean Dice score was 0.940 (interquartile range, 0.930–0.961), and the Pearson correlation coefficient for volume was 0.981 (95% CI: 0.966, 0.989). For TZ segmentation, the mean Dice score was 0.910 (interquartile range, 0.894–0.938), and the Pearson correlation coefficient for volume was 0.992 (95% CI: 0.985, 0.995). For PZ segmentation, the mean Dice score was 0.774 (interquartile range, 0.727–0.832), and the Pearson correlation coefficient for volume was 0.927 (95% CI: 0.870, 0.957). Conclusion Deep learning with an architecture composed of three U-Nets can accurately segment the prostate, TZ, and PZ. Keywords: MRI, Genital/Reproductive, Prostate, Neural Networks Supplemental material is available for this article. © RSNA, 2021
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
答辩发布了新的文献求助10
3秒前
3秒前
3秒前
大模型应助阁主采纳,获得10
3秒前
4秒前
5秒前
5秒前
popcorn完成签到,获得积分10
5秒前
5秒前
5秒前
twotwomi完成签到,获得积分10
5秒前
ly完成签到,获得积分20
6秒前
ChenYifei完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
Lucas应助来日方长采纳,获得10
7秒前
chang发布了新的文献求助10
7秒前
小巫发布了新的文献求助10
8秒前
周娅敏发布了新的文献求助10
9秒前
华仔应助答辩采纳,获得10
9秒前
caixiayin发布了新的文献求助10
9秒前
9秒前
威武的冷风关注了科研通微信公众号
10秒前
10秒前
10秒前
10秒前
11秒前
科研通AI2S应助奋斗若风采纳,获得10
11秒前
ly发布了新的文献求助10
11秒前
12秒前
xiang完成签到,获得积分10
12秒前
李爱国应助迷恋采纳,获得10
12秒前
在摆烂的dog完成签到,获得积分10
13秒前
星辰大海应助刘源采纳,获得10
13秒前
小巫完成签到,获得积分10
14秒前
ironsilica完成签到,获得积分10
14秒前
土豪的土豆完成签到 ,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650