Segmentation of the Prostate Transition Zone and Peripheral Zone on MR Images with Deep Learning

四分位间距 Sørensen–骰子系数 分割 前列腺 前列腺活检 皮尔逊积矩相关系数 医学 人工智能 数据集 图像分割 核医学 计算机科学 数学 外科 内科学 统计 癌症
作者
Michelle Bardis,Roozbeh Houshyar,Chanon Chantaduly,Karen Tran-Harding,Alexander Ushinsky,Chantal Chahine,Mark Rupasinghe,Daniel Chow,Peter Chang
出处
期刊:Radiology 卷期号:3 (3): e200024-e200024 被引量:46
标识
DOI:10.1148/rycan.2021200024
摘要

Purpose To develop a deep learning model to delineate the transition zone (TZ) and peripheral zone (PZ) of the prostate on MR images. Materials and Methods This retrospective study was composed of patients who underwent a multiparametric prostate MRI and an MRI/transrectal US fusion biopsy between January 2013 and May 2016. A board-certified abdominal radiologist manually segmented the prostate, TZ, and PZ on the entire data set. Included accessions were split into 60% training, 20% validation, and 20% test data sets for model development. Three convolutional neural networks with a U-Net architecture were trained for automatic recognition of the prostate organ, TZ, and PZ. Model performance for segmentation was assessed using Dice scores and Pearson correlation coefficients. Results A total of 242 patients were included (242 MR images; 6292 total images). Models for prostate organ segmentation, TZ segmentation, and PZ segmentation were trained and validated. Using the test data set, for prostate organ segmentation, the mean Dice score was 0.940 (interquartile range, 0.930–0.961), and the Pearson correlation coefficient for volume was 0.981 (95% CI: 0.966, 0.989). For TZ segmentation, the mean Dice score was 0.910 (interquartile range, 0.894–0.938), and the Pearson correlation coefficient for volume was 0.992 (95% CI: 0.985, 0.995). For PZ segmentation, the mean Dice score was 0.774 (interquartile range, 0.727–0.832), and the Pearson correlation coefficient for volume was 0.927 (95% CI: 0.870, 0.957). Conclusion Deep learning with an architecture composed of three U-Nets can accurately segment the prostate, TZ, and PZ. Keywords: MRI, Genital/Reproductive, Prostate, Neural Networks Supplemental material is available for this article. © RSNA, 2021
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助lixm采纳,获得10
1秒前
认真雅阳完成签到 ,获得积分10
1秒前
博弈春秋发布了新的文献求助10
1秒前
LANKE完成签到,获得积分10
2秒前
Theshiled完成签到,获得积分10
2秒前
Betty完成签到,获得积分10
2秒前
jie酱拌面应助wujiao采纳,获得10
2秒前
无花果应助花开米兰城采纳,获得10
2秒前
粱烨华发布了新的文献求助10
3秒前
3秒前
小刘先生完成签到,获得积分20
4秒前
酷酷的滕完成签到,获得积分10
4秒前
矮小的万声完成签到,获得积分20
4秒前
4秒前
5秒前
laber应助红红采纳,获得50
5秒前
6秒前
6秒前
KaiZI发布了新的文献求助10
6秒前
8秒前
冷酷天问完成签到,获得积分10
8秒前
8秒前
8秒前
鲨鱼关注了科研通微信公众号
8秒前
8秒前
pan关闭了pan文献求助
8秒前
WLWLW举报shine求助涉嫌违规
8秒前
呱呱完成签到,获得积分10
9秒前
xiyang发布了新的文献求助10
9秒前
9秒前
发如雪完成签到 ,获得积分10
10秒前
serein完成签到,获得积分10
10秒前
安平发布了新的文献求助10
11秒前
英俊的铭应助zimu012采纳,获得10
11秒前
tfldog完成签到,获得积分10
11秒前
GH发布了新的文献求助10
12秒前
小巧雪糕发布了新的文献求助10
12秒前
chl完成签到,获得积分20
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576795
求助须知:如何正确求助?哪些是违规求助? 3995951
关于积分的说明 12370915
捐赠科研通 3670012
什么是DOI,文献DOI怎么找? 2022527
邀请新用户注册赠送积分活动 1056628
科研通“疑难数据库(出版商)”最低求助积分说明 943794