亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Segmentation of the Prostate Transition Zone and Peripheral Zone on MR Images with Deep Learning

四分位间距 Sørensen–骰子系数 分割 前列腺 前列腺活检 皮尔逊积矩相关系数 医学 人工智能 数据集 图像分割 核医学 计算机科学 数学 外科 内科学 统计 癌症
作者
Michelle Bardis,Roozbeh Houshyar,Chanon Chantaduly,Karen Tran-Harding,Alexander Ushinsky,Chantal Chahine,Mark Rupasinghe,Daniel Chow,Peter Chang
出处
期刊:Radiology 卷期号:3 (3): e200024-e200024 被引量:46
标识
DOI:10.1148/rycan.2021200024
摘要

Purpose To develop a deep learning model to delineate the transition zone (TZ) and peripheral zone (PZ) of the prostate on MR images. Materials and Methods This retrospective study was composed of patients who underwent a multiparametric prostate MRI and an MRI/transrectal US fusion biopsy between January 2013 and May 2016. A board-certified abdominal radiologist manually segmented the prostate, TZ, and PZ on the entire data set. Included accessions were split into 60% training, 20% validation, and 20% test data sets for model development. Three convolutional neural networks with a U-Net architecture were trained for automatic recognition of the prostate organ, TZ, and PZ. Model performance for segmentation was assessed using Dice scores and Pearson correlation coefficients. Results A total of 242 patients were included (242 MR images; 6292 total images). Models for prostate organ segmentation, TZ segmentation, and PZ segmentation were trained and validated. Using the test data set, for prostate organ segmentation, the mean Dice score was 0.940 (interquartile range, 0.930–0.961), and the Pearson correlation coefficient for volume was 0.981 (95% CI: 0.966, 0.989). For TZ segmentation, the mean Dice score was 0.910 (interquartile range, 0.894–0.938), and the Pearson correlation coefficient for volume was 0.992 (95% CI: 0.985, 0.995). For PZ segmentation, the mean Dice score was 0.774 (interquartile range, 0.727–0.832), and the Pearson correlation coefficient for volume was 0.927 (95% CI: 0.870, 0.957). Conclusion Deep learning with an architecture composed of three U-Nets can accurately segment the prostate, TZ, and PZ. Keywords: MRI, Genital/Reproductive, Prostate, Neural Networks Supplemental material is available for this article. © RSNA, 2021
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
红娘发布了新的文献求助10
1秒前
离歌笑发布了新的文献求助10
3秒前
Akim应助执着诺言采纳,获得10
8秒前
Jasper应助竹蜻蜓采纳,获得10
10秒前
15秒前
15秒前
yanxueyi完成签到 ,获得积分10
20秒前
执着诺言发布了新的文献求助10
21秒前
夏侯德东发布了新的文献求助10
22秒前
35秒前
动人的静竹完成签到,获得积分20
37秒前
38秒前
小花小宝和阿飞完成签到 ,获得积分10
38秒前
慕青应助夏侯德东采纳,获得10
40秒前
Zr完成签到,获得积分10
43秒前
cfy完成签到,获得积分10
45秒前
48秒前
妄想天使发布了新的文献求助10
49秒前
anan完成签到 ,获得积分10
55秒前
壳聚糖完成签到 ,获得积分10
1分钟前
1分钟前
醉熏的幻灵完成签到 ,获得积分10
1分钟前
1分钟前
ho应助妄想天使采纳,获得10
1分钟前
夏侯德东发布了新的文献求助10
1分钟前
夏侯德东完成签到,获得积分10
1分钟前
1分钟前
1分钟前
rrrrrrry发布了新的文献求助10
1分钟前
luna完成签到 ,获得积分10
1分钟前
1分钟前
arizaki7发布了新的文献求助10
1分钟前
卡皮巴拉发布了新的文献求助10
1分钟前
坚定的磬完成签到,获得积分20
1分钟前
arizaki7完成签到,获得积分10
1分钟前
1分钟前
Tumumu完成签到,获得积分10
1分钟前
1分钟前
执着牛青完成签到,获得积分10
1分钟前
Tendency完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5376205
求助须知:如何正确求助?哪些是违规求助? 4501313
关于积分的说明 14012698
捐赠科研通 4409021
什么是DOI,文献DOI怎么找? 2422019
邀请新用户注册赠送积分活动 1414767
关于科研通互助平台的介绍 1391623