Discovery of lipid profiles of type 2 diabetes associated with hyperlipidemia using untargeted UPLC Q-TOF/MS-based lipidomics approach

脂类学 高脂血症 甘油磷脂 2型糖尿病 血脂谱 脂质代谢 甘油磷酯 内科学 脂质体 糖尿病 胆固醇 化学 血脂 内分泌学 医学 生物 生物化学 磷脂
作者
Yan Liang,Pei Han,Minghua Jin,Ye Tian,Fudi Wang,Weiping Jia
出处
期刊:Clinica Chimica Acta [Elsevier BV]
卷期号:520: 53-62 被引量:13
标识
DOI:10.1016/j.cca.2021.05.031
摘要

The incidence of type 2 diabetes (T2D) is rising rapidly and has become an important public health problem. According to reports, people with T2D often have hyperlipidemia. Hence, in the current study, a plasma non-targeted lipidomics method was used to study the differences in lipid profile between 36 T2D-associated hyperlipidemia patients and 43 healthy controls by ultra-performance liquid chromatography coupled with quadrupole time-of-flight high-definition mass spectrometry (UPLC Q-TOF/MS). Furthermore, we studied the differences in lipid profile between 36 T2D-associated hyperlipidemia patients and 41 T2D patients. Principal component analysis (PCA), orthogonal partial least squares-discriminant analysis (OPLS-DA), S-plot and heatmap were used to analyze the lipid changes between the groups. Compared with the healthy control group, 37 lipids were significantly altered in the T2D-associated hyperlipidemia group, and when compared with the T2D group, 22 lipids were significantly altered in the T2D-associated hyperlipidemia group. Of all the detected lipids categories which included sphingolipids, glycerolipids, glycerophospholipids, prenol lipids and saccharolipids, glycerophospholipids accounted for the largest proportion in the two groups. Also, this study found that glycerophospholipid metabolism pathway was the most relevant pathway for these lipid metabolisms. The identified lipids may enhance the disease prediction and provide a new tool to monitor the progression of T2D-associated hyperlipidemia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒心焦完成签到,获得积分10
刚刚
科研通AI6应助标致碧曼采纳,获得10
刚刚
zzk关注了科研通微信公众号
5秒前
6秒前
小欣完成签到,获得积分10
6秒前
6秒前
正直夜安完成签到 ,获得积分0
7秒前
甜甜海豚完成签到 ,获得积分10
7秒前
8秒前
9秒前
麻醉界的翘楚完成签到,获得积分10
9秒前
科研通AI5应助8氨基喹啉采纳,获得10
9秒前
豆包发布了新的文献求助10
11秒前
Cry_Man发布了新的文献求助10
12秒前
12秒前
cling发布了新的文献求助10
13秒前
mango完成签到,获得积分10
13秒前
你喝不喝娃哈哈完成签到 ,获得积分10
13秒前
舒心渊思发布了新的文献求助10
15秒前
蓝桥兰灯完成签到,获得积分10
15秒前
如你所liao完成签到,获得积分10
15秒前
搜集达人应助筱喜采纳,获得10
18秒前
20秒前
科研通AI2S应助理理采纳,获得10
20秒前
20秒前
SciGPT应助Doc.Wang采纳,获得10
20秒前
火星上白羊完成签到 ,获得积分10
21秒前
22秒前
文静的飞飞完成签到 ,获得积分10
22秒前
唐唐完成签到,获得积分10
23秒前
24秒前
科研通AI6应助温暖的夏岚采纳,获得10
24秒前
浮游应助Doris采纳,获得30
24秒前
王灿灿完成签到,获得积分10
24秒前
zhabgyucheng发布了新的文献求助10
25秒前
zzk发布了新的文献求助30
25秒前
小熊5号完成签到,获得积分10
25秒前
26秒前
铠甲勇士完成签到,获得积分10
26秒前
warmer发布了新的文献求助10
26秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
The Emotional Life of Organisations 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5213989
求助须知:如何正确求助?哪些是违规求助? 4389639
关于积分的说明 13667469
捐赠科研通 4250894
什么是DOI,文献DOI怎么找? 2332289
邀请新用户注册赠送积分活动 1329887
关于科研通互助平台的介绍 1283580