血管生成
外体
伤口愈合
PTEN公司
细胞生物学
间充质干细胞
基因敲除
细胞迁移
微泡
癌症研究
化学
生物
小RNA
细胞
免疫学
PI3K/AKT/mTOR通路
细胞凋亡
信号转导
生物化学
基因
作者
Li Pi,Li Yang,Bairong Fang,Xianxi Meng,Qian Li
标识
DOI:10.1007/s11010-021-04251-w
摘要
Angiogenesis plays a key in the process of tissue repair and wound healing. Human adipose-derived mesenchymal stem cells (HADSCs) have been found to act a promotion role during angiogenesis. Moreover, miR-125a-3p in HADSCs could promote the angiogenesis of HUVECs, but their specific mechanism in wound healing needs further study. Western blotting and qRT-PCR were used for detecting the protein and mRNA level, respectively. Exosomes were isolated successfully, and transmission electron microscope was used to identify exosomes. Angiogenesis, cell migration, and proliferation were detected with tube formation, wound healing, and MTT assays. The interactions of miR-125a-3p and PTEN were validated using dual-luciferase reporter assay. Animal model was used to evaluate the effect of miR-125a-3p on wound healing. HADSCs-exosome remarkably promoted the viability, migration, and angiogenesis of HUVECs. Knockdown of miR-125a-3p in HADSCs could inhibit the effect of HADSCs-exosome, while overexpression of miR-125a-3p could further promote the effect of HADSCs-exosome on HUVECs. MiR-125a-3p from HADSCs-exosome inhibited the expression of PTEN in HUVECs. Knockdown of PTEN promoted the viability, migration, and angiogenesis of HUVECs and reversed the effect of miR-125a-3p knockdown on HUVECs. Finally, miR-125a-3p from HADSCs-exosome could promote wound healing and angiogenesis in mice by inhibiting PTEN in mice wound granulation tissues. MiR-125a-3p from the HADSCs-exosome promoted the wound healing and angiogenesis, and these effects were achieved through regulating PTEN. This study may provide a new thought for the treatment and prevention of tissue repair.
科研通智能强力驱动
Strongly Powered by AbleSci AI