Hyperspectral inversion of nitrogen content in maize leaves based on different dimensionality reduction algorithms

高光谱成像 降维 主成分分析 偏最小二乘回归 维数之咒 算法 数学 均方误差 过度拟合 小波 人工智能 模式识别(心理学) 遥感 计算机科学 生物系统 统计 人工神经网络 生物 地质学
作者
Chunling Cao,Tianli Wang,Maofang Gao,Yang Li,Dandan Li,Huijie Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:190: 106461-106461 被引量:65
标识
DOI:10.1016/j.compag.2021.106461
摘要

Fast, accurate, and non-destructive detection of the nitrogen (N) content in corn leaves is of great significance for the precise dynamic management of nitrogen fertilizer application for corn. Hyperspectral data can provide an important means for detecting the nitrogen content in plants. Existing research has mainly focused on using various vegetation indices or 3–5 band combinations to estimate leaf nitrogen content, ignoring the different in spectral characteristics of hyperspectral data and failing to characterize most of the spectral information. Some scholars have used principal component analysis and wavelet analysis dimensionality reduction algorithms, but used different bands for these models. Therefore, more and different inversion models need to be introduced to improve the use of spectral data and increase the universality of the model. The present study selected three different methods to reduce data dimensionality, including the Successful Projections Algorithm (SPA) and the Least Absolute Shrinkage and Selection Operator (LASSO) and the Elastic Net (EN) algorithms. Then the processed spectral reflectance information and observational data for synchronous leaf nitrogen content were used to construct an inversion model used to predict leaf nitrogen content. Nine inversion models were constructed based on different dimensionality reduction and regression methods. Based on the coefficient of determination (R2) and root mean square error (RMSE), the accuracy of each model was tested. The main results follow: (1) Dimensionality reduction processing of hyperspectral data can effectively prevent data from overfitting, limit the correlation between adjacent frequency bands, and reduce data redundancy. An EN dimensionality reduction algorithm (EN-Partial Least Squares Regression (PLSR)) model R2 = 0.96, RMSE = 0.19) was better than a SPA (SPA-PLSR model R2 = 0.90, RMSE = 0.26) and LASSO (LASSO-PLSR model R2 = 0.89, RMSE = 0.37) dimensionality reduction algorithm. (2) For the same dimensionality reduction method, the accuracy of the regression model based on PLSR was higher than that of other models. Among the nine inversion models in this paper, the EN-PLSR inversion model has the best fitting effect (R2 = 0.96, RMSE = 0.19). (3) Obvious changes in nitrogen content have little effect on the overall hyperspectral reflectance curve. This study provides a reference for high-efficiency and non-destructive testing of corn nitrogen content using hyperspectral technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彪壮的雪晴完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
Disguise完成签到 ,获得积分10
2秒前
2秒前
bing完成签到,获得积分10
3秒前
Sleven完成签到,获得积分10
4秒前
强壮的美女完成签到,获得积分10
8秒前
郭磊完成签到 ,获得积分10
8秒前
俭朴的一曲完成签到,获得积分10
12秒前
TheGreat完成签到,获得积分10
13秒前
Murphy~完成签到,获得积分10
14秒前
优雅的千雁完成签到,获得积分10
15秒前
16秒前
阿烨完成签到,获得积分10
17秒前
19秒前
某只橘猫君完成签到,获得积分10
21秒前
qaplay完成签到 ,获得积分0
24秒前
韩寒完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
26秒前
27秒前
悟空完成签到 ,获得积分10
28秒前
nglmy77完成签到 ,获得积分10
28秒前
每天都很忙完成签到 ,获得积分10
29秒前
lhz完成签到,获得积分20
30秒前
30秒前
mayberichard完成签到,获得积分10
35秒前
林美芳完成签到 ,获得积分10
38秒前
米博士完成签到,获得积分10
41秒前
斯文远望完成签到,获得积分10
42秒前
ZHZ完成签到,获得积分10
46秒前
jjyy完成签到,获得积分10
46秒前
危机的秋双完成签到 ,获得积分10
48秒前
jfeng完成签到,获得积分10
49秒前
纯氧完成签到,获得积分10
49秒前
听话的尔竹完成签到 ,获得积分10
51秒前
生命科学的第一推动力完成签到 ,获得积分10
52秒前
53秒前
量子星尘发布了新的文献求助10
53秒前
xiaoliu完成签到,获得积分10
54秒前
lishiwei完成签到 ,获得积分10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5432818
求助须知:如何正确求助?哪些是违规求助? 4545308
关于积分的说明 14195402
捐赠科研通 4464808
什么是DOI,文献DOI怎么找? 2447268
邀请新用户注册赠送积分活动 1438558
关于科研通互助平台的介绍 1415601