Hyperspectral inversion of nitrogen content in maize leaves based on different dimensionality reduction algorithms

高光谱成像 降维 主成分分析 偏最小二乘回归 维数之咒 算法 数学 均方误差 过度拟合 小波 人工智能 模式识别(心理学) 遥感 计算机科学 统计 人工神经网络 地质学
作者
Chunling Cao,Tianli Wang,Maofang Gao,Yang Li,Dandan Li,Huijie Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:190: 106461-106461 被引量:35
标识
DOI:10.1016/j.compag.2021.106461
摘要

Fast, accurate, and non-destructive detection of the nitrogen (N) content in corn leaves is of great significance for the precise dynamic management of nitrogen fertilizer application for corn. Hyperspectral data can provide an important means for detecting the nitrogen content in plants. Existing research has mainly focused on using various vegetation indices or 3–5 band combinations to estimate leaf nitrogen content, ignoring the different in spectral characteristics of hyperspectral data and failing to characterize most of the spectral information. Some scholars have used principal component analysis and wavelet analysis dimensionality reduction algorithms, but used different bands for these models. Therefore, more and different inversion models need to be introduced to improve the use of spectral data and increase the universality of the model. The present study selected three different methods to reduce data dimensionality, including the Successful Projections Algorithm (SPA) and the Least Absolute Shrinkage and Selection Operator (LASSO) and the Elastic Net (EN) algorithms. Then the processed spectral reflectance information and observational data for synchronous leaf nitrogen content were used to construct an inversion model used to predict leaf nitrogen content. Nine inversion models were constructed based on different dimensionality reduction and regression methods. Based on the coefficient of determination (R2) and root mean square error (RMSE), the accuracy of each model was tested. The main results follow: (1) Dimensionality reduction processing of hyperspectral data can effectively prevent data from overfitting, limit the correlation between adjacent frequency bands, and reduce data redundancy. An EN dimensionality reduction algorithm (EN-Partial Least Squares Regression (PLSR)) model R2 = 0.96, RMSE = 0.19) was better than a SPA (SPA-PLSR model R2 = 0.90, RMSE = 0.26) and LASSO (LASSO-PLSR model R2 = 0.89, RMSE = 0.37) dimensionality reduction algorithm. (2) For the same dimensionality reduction method, the accuracy of the regression model based on PLSR was higher than that of other models. Among the nine inversion models in this paper, the EN-PLSR inversion model has the best fitting effect (R2 = 0.96, RMSE = 0.19). (3) Obvious changes in nitrogen content have little effect on the overall hyperspectral reflectance curve. This study provides a reference for high-efficiency and non-destructive testing of corn nitrogen content using hyperspectral technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱笑若冰发布了新的文献求助10
刚刚
郭富城完成签到,获得积分10
1秒前
hhhblabla应助空古悠浪采纳,获得20
1秒前
射天狼完成签到,获得积分10
1秒前
清爽尔安发布了新的文献求助10
1秒前
3秒前
3秒前
顾矜应助GS11采纳,获得10
4秒前
SuperZzz完成签到,获得积分10
4秒前
李大伟发布了新的文献求助10
6秒前
贾克斯完成签到,获得积分20
6秒前
闾丘剑封发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助30
6秒前
李健应助hanleiharry1采纳,获得10
6秒前
7秒前
科研通AI2S应助Hey采纳,获得20
9秒前
爱笑若冰完成签到,获得积分10
9秒前
tomorrow完成签到 ,获得积分10
10秒前
11秒前
Rei完成签到 ,获得积分20
12秒前
科研通AI2S应助无所谓的啦采纳,获得10
12秒前
田様应助打我呀采纳,获得10
12秒前
13秒前
13秒前
科研狗发布了新的文献求助10
13秒前
yixiaolou发布了新的文献求助10
14秒前
李大伟完成签到,获得积分10
15秒前
慎独完成签到,获得积分10
15秒前
MchemG应助科研通管家采纳,获得10
16秒前
乐乐应助科研通管家采纳,获得10
16秒前
orixero应助科研通管家采纳,获得30
16秒前
SYLH应助科研通管家采纳,获得30
16秒前
CHENG_2025应助科研通管家采纳,获得10
16秒前
小萌发布了新的文献求助10
16秒前
16秒前
Jasper应助科研通管家采纳,获得10
16秒前
在水一方应助科研通管家采纳,获得30
16秒前
SYLH应助科研通管家采纳,获得10
16秒前
爆米花应助科研通管家采纳,获得10
16秒前
英姑应助科研通管家采纳,获得10
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989406
求助须知:如何正确求助?哪些是违规求助? 3531522
关于积分的说明 11254187
捐赠科研通 3270174
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174