Hyperspectral inversion of nitrogen content in maize leaves based on different dimensionality reduction algorithms

高光谱成像 降维 主成分分析 偏最小二乘回归 维数之咒 算法 数学 均方误差 过度拟合 小波 人工智能 模式识别(心理学) 遥感 计算机科学 生物系统 统计 人工神经网络 生物 地质学
作者
Chunling Cao,Tianli Wang,Maofang Gao,Yang Li,Dandan Li,Huijie Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:190: 106461-106461 被引量:69
标识
DOI:10.1016/j.compag.2021.106461
摘要

Fast, accurate, and non-destructive detection of the nitrogen (N) content in corn leaves is of great significance for the precise dynamic management of nitrogen fertilizer application for corn. Hyperspectral data can provide an important means for detecting the nitrogen content in plants. Existing research has mainly focused on using various vegetation indices or 3–5 band combinations to estimate leaf nitrogen content, ignoring the different in spectral characteristics of hyperspectral data and failing to characterize most of the spectral information. Some scholars have used principal component analysis and wavelet analysis dimensionality reduction algorithms, but used different bands for these models. Therefore, more and different inversion models need to be introduced to improve the use of spectral data and increase the universality of the model. The present study selected three different methods to reduce data dimensionality, including the Successful Projections Algorithm (SPA) and the Least Absolute Shrinkage and Selection Operator (LASSO) and the Elastic Net (EN) algorithms. Then the processed spectral reflectance information and observational data for synchronous leaf nitrogen content were used to construct an inversion model used to predict leaf nitrogen content. Nine inversion models were constructed based on different dimensionality reduction and regression methods. Based on the coefficient of determination (R2) and root mean square error (RMSE), the accuracy of each model was tested. The main results follow: (1) Dimensionality reduction processing of hyperspectral data can effectively prevent data from overfitting, limit the correlation between adjacent frequency bands, and reduce data redundancy. An EN dimensionality reduction algorithm (EN-Partial Least Squares Regression (PLSR)) model R2 = 0.96, RMSE = 0.19) was better than a SPA (SPA-PLSR model R2 = 0.90, RMSE = 0.26) and LASSO (LASSO-PLSR model R2 = 0.89, RMSE = 0.37) dimensionality reduction algorithm. (2) For the same dimensionality reduction method, the accuracy of the regression model based on PLSR was higher than that of other models. Among the nine inversion models in this paper, the EN-PLSR inversion model has the best fitting effect (R2 = 0.96, RMSE = 0.19). (3) Obvious changes in nitrogen content have little effect on the overall hyperspectral reflectance curve. This study provides a reference for high-efficiency and non-destructive testing of corn nitrogen content using hyperspectral technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暖羊羊Y完成签到 ,获得积分10
刚刚
Jeremy完成签到 ,获得积分10
1秒前
李健应助罗大壮采纳,获得10
2秒前
realityjunky完成签到,获得积分10
2秒前
拾柒完成签到 ,获得积分10
3秒前
3秒前
離殇完成签到,获得积分10
4秒前
浊轶完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
james完成签到,获得积分10
7秒前
7秒前
7秒前
zhang完成签到,获得积分10
8秒前
呆呆是一条鱼完成签到,获得积分10
8秒前
Freddy完成签到 ,获得积分10
9秒前
12秒前
13秒前
111完成签到,获得积分10
13秒前
xdc发布了新的文献求助10
15秒前
文承龙完成签到,获得积分20
18秒前
大军门诊完成签到,获得积分10
19秒前
周周完成签到 ,获得积分10
19秒前
好的昂完成签到,获得积分10
19秒前
罗大壮发布了新的文献求助10
20秒前
xiaoruixue完成签到,获得积分10
20秒前
阿策完成签到,获得积分10
21秒前
虚幻绿兰完成签到,获得积分10
21秒前
ycc完成签到,获得积分10
23秒前
LaffiteElla完成签到,获得积分10
23秒前
gexzygg完成签到,获得积分0
24秒前
孙小懒完成签到,获得积分10
25秒前
26秒前
天明完成签到,获得积分10
26秒前
十字路口完成签到 ,获得积分10
26秒前
峰宝宝完成签到,获得积分10
27秒前
蕉鲁诺蕉巴纳完成签到,获得积分0
27秒前
muzi完成签到,获得积分10
28秒前
李海平完成签到 ,获得积分10
28秒前
ding7862完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助10
29秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5450504
求助须知:如何正确求助?哪些是违规求助? 4558218
关于积分的说明 14265752
捐赠科研通 4481783
什么是DOI,文献DOI怎么找? 2454981
邀请新用户注册赠送积分活动 1445752
关于科研通互助平台的介绍 1421880