Hyperspectral inversion of nitrogen content in maize leaves based on different dimensionality reduction algorithms

高光谱成像 降维 主成分分析 偏最小二乘回归 维数之咒 算法 数学 均方误差 过度拟合 小波 人工智能 模式识别(心理学) 遥感 计算机科学 统计 人工神经网络 地质学
作者
Chunling Cao,Tianli Wang,Maofang Gao,Yang Li,Dandan Li,Huijie Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:190: 106461-106461 被引量:35
标识
DOI:10.1016/j.compag.2021.106461
摘要

Fast, accurate, and non-destructive detection of the nitrogen (N) content in corn leaves is of great significance for the precise dynamic management of nitrogen fertilizer application for corn. Hyperspectral data can provide an important means for detecting the nitrogen content in plants. Existing research has mainly focused on using various vegetation indices or 3–5 band combinations to estimate leaf nitrogen content, ignoring the different in spectral characteristics of hyperspectral data and failing to characterize most of the spectral information. Some scholars have used principal component analysis and wavelet analysis dimensionality reduction algorithms, but used different bands for these models. Therefore, more and different inversion models need to be introduced to improve the use of spectral data and increase the universality of the model. The present study selected three different methods to reduce data dimensionality, including the Successful Projections Algorithm (SPA) and the Least Absolute Shrinkage and Selection Operator (LASSO) and the Elastic Net (EN) algorithms. Then the processed spectral reflectance information and observational data for synchronous leaf nitrogen content were used to construct an inversion model used to predict leaf nitrogen content. Nine inversion models were constructed based on different dimensionality reduction and regression methods. Based on the coefficient of determination (R2) and root mean square error (RMSE), the accuracy of each model was tested. The main results follow: (1) Dimensionality reduction processing of hyperspectral data can effectively prevent data from overfitting, limit the correlation between adjacent frequency bands, and reduce data redundancy. An EN dimensionality reduction algorithm (EN-Partial Least Squares Regression (PLSR)) model R2 = 0.96, RMSE = 0.19) was better than a SPA (SPA-PLSR model R2 = 0.90, RMSE = 0.26) and LASSO (LASSO-PLSR model R2 = 0.89, RMSE = 0.37) dimensionality reduction algorithm. (2) For the same dimensionality reduction method, the accuracy of the regression model based on PLSR was higher than that of other models. Among the nine inversion models in this paper, the EN-PLSR inversion model has the best fitting effect (R2 = 0.96, RMSE = 0.19). (3) Obvious changes in nitrogen content have little effect on the overall hyperspectral reflectance curve. This study provides a reference for high-efficiency and non-destructive testing of corn nitrogen content using hyperspectral technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助北城采纳,获得10
2秒前
A阿澍发布了新的文献求助10
2秒前
顺利煎蛋完成签到,获得积分10
2秒前
肖肖发布了新的文献求助10
3秒前
chengmin完成签到 ,获得积分10
3秒前
wei发布了新的文献求助50
3秒前
4秒前
5秒前
sunwen发布了新的文献求助10
5秒前
6秒前
7秒前
北城完成签到,获得积分10
8秒前
十三完成签到 ,获得积分10
9秒前
打打应助傲寒采纳,获得10
9秒前
小李吃小孩完成签到,获得积分10
9秒前
含蓄大雁完成签到,获得积分10
9秒前
10秒前
Livrik发布了新的文献求助10
11秒前
卢敏明发布了新的文献求助10
11秒前
李健应助俏皮的白柏采纳,获得10
12秒前
12秒前
很好关注了科研通微信公众号
13秒前
13秒前
14秒前
研友_VZG7GZ应助九月采纳,获得10
15秒前
TTm关注了科研通微信公众号
15秒前
16秒前
16秒前
顾矜应助lixiaolu采纳,获得10
17秒前
liu发布了新的文献求助10
17秒前
18秒前
Orange应助光亮嵩采纳,获得10
18秒前
19秒前
21秒前
ANmin发布了新的文献求助10
21秒前
22秒前
24秒前
24秒前
25秒前
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988868
求助须知:如何正确求助?哪些是违规求助? 3531255
关于积分的说明 11253071
捐赠科研通 3269858
什么是DOI,文献DOI怎么找? 1804822
邀请新用户注册赠送积分活动 881994
科研通“疑难数据库(出版商)”最低求助积分说明 809035