Hyperspectral inversion of nitrogen content in maize leaves based on different dimensionality reduction algorithms

高光谱成像 降维 主成分分析 偏最小二乘回归 维数之咒 算法 数学 均方误差 过度拟合 小波 人工智能 模式识别(心理学) 遥感 计算机科学 生物系统 统计 人工神经网络 生物 地质学
作者
Chunling Cao,Tianli Wang,Maofang Gao,Yang Li,Dandan Li,Huijie Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:190: 106461-106461 被引量:69
标识
DOI:10.1016/j.compag.2021.106461
摘要

Fast, accurate, and non-destructive detection of the nitrogen (N) content in corn leaves is of great significance for the precise dynamic management of nitrogen fertilizer application for corn. Hyperspectral data can provide an important means for detecting the nitrogen content in plants. Existing research has mainly focused on using various vegetation indices or 3–5 band combinations to estimate leaf nitrogen content, ignoring the different in spectral characteristics of hyperspectral data and failing to characterize most of the spectral information. Some scholars have used principal component analysis and wavelet analysis dimensionality reduction algorithms, but used different bands for these models. Therefore, more and different inversion models need to be introduced to improve the use of spectral data and increase the universality of the model. The present study selected three different methods to reduce data dimensionality, including the Successful Projections Algorithm (SPA) and the Least Absolute Shrinkage and Selection Operator (LASSO) and the Elastic Net (EN) algorithms. Then the processed spectral reflectance information and observational data for synchronous leaf nitrogen content were used to construct an inversion model used to predict leaf nitrogen content. Nine inversion models were constructed based on different dimensionality reduction and regression methods. Based on the coefficient of determination (R2) and root mean square error (RMSE), the accuracy of each model was tested. The main results follow: (1) Dimensionality reduction processing of hyperspectral data can effectively prevent data from overfitting, limit the correlation between adjacent frequency bands, and reduce data redundancy. An EN dimensionality reduction algorithm (EN-Partial Least Squares Regression (PLSR)) model R2 = 0.96, RMSE = 0.19) was better than a SPA (SPA-PLSR model R2 = 0.90, RMSE = 0.26) and LASSO (LASSO-PLSR model R2 = 0.89, RMSE = 0.37) dimensionality reduction algorithm. (2) For the same dimensionality reduction method, the accuracy of the regression model based on PLSR was higher than that of other models. Among the nine inversion models in this paper, the EN-PLSR inversion model has the best fitting effect (R2 = 0.96, RMSE = 0.19). (3) Obvious changes in nitrogen content have little effect on the overall hyperspectral reflectance curve. This study provides a reference for high-efficiency and non-destructive testing of corn nitrogen content using hyperspectral technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
3秒前
4秒前
科研通AI6应助泅渡采纳,获得30
4秒前
4秒前
唐玉完成签到,获得积分10
4秒前
火锅发布了新的文献求助10
4秒前
Aurora发布了新的文献求助10
4秒前
南枝焙雪完成签到 ,获得积分10
5秒前
5秒前
传奇3应助沉默芸采纳,获得10
5秒前
所所应助芜湖芜湖采纳,获得10
5秒前
Happyable完成签到,获得积分10
6秒前
stone完成签到,获得积分10
6秒前
asdfghjkl完成签到,获得积分10
6秒前
7秒前
sun发布了新的文献求助10
7秒前
领导范儿应助木木采纳,获得10
8秒前
8秒前
隐形曼青应助syx采纳,获得30
8秒前
9秒前
9秒前
9秒前
9秒前
cssfsa发布了新的文献求助30
9秒前
Lucas应助小满采纳,获得10
9秒前
鳗鱼契完成签到,获得积分10
9秒前
10秒前
KH发布了新的文献求助10
11秒前
11秒前
11秒前
我是老大应助武大西门采纳,获得10
11秒前
ZMl发布了新的文献求助10
12秒前
12秒前
衣裳薄完成签到,获得积分10
12秒前
打打应助情红锐采纳,获得10
12秒前
六小八发布了新的文献求助20
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618669
求助须知:如何正确求助?哪些是违规求助? 4703613
关于积分的说明 14922976
捐赠科研通 4758156
什么是DOI,文献DOI怎么找? 2550168
邀请新用户注册赠送积分活动 1513000
关于科研通互助平台的介绍 1474379