Hyperspectral inversion of nitrogen content in maize leaves based on different dimensionality reduction algorithms

高光谱成像 降维 主成分分析 偏最小二乘回归 维数之咒 算法 数学 均方误差 过度拟合 小波 人工智能 模式识别(心理学) 遥感 计算机科学 统计 人工神经网络 地质学
作者
Chunling Cao,Tianli Wang,Maofang Gao,Yang Li,Dandan Li,Huijie Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:190: 106461-106461 被引量:35
标识
DOI:10.1016/j.compag.2021.106461
摘要

Fast, accurate, and non-destructive detection of the nitrogen (N) content in corn leaves is of great significance for the precise dynamic management of nitrogen fertilizer application for corn. Hyperspectral data can provide an important means for detecting the nitrogen content in plants. Existing research has mainly focused on using various vegetation indices or 3–5 band combinations to estimate leaf nitrogen content, ignoring the different in spectral characteristics of hyperspectral data and failing to characterize most of the spectral information. Some scholars have used principal component analysis and wavelet analysis dimensionality reduction algorithms, but used different bands for these models. Therefore, more and different inversion models need to be introduced to improve the use of spectral data and increase the universality of the model. The present study selected three different methods to reduce data dimensionality, including the Successful Projections Algorithm (SPA) and the Least Absolute Shrinkage and Selection Operator (LASSO) and the Elastic Net (EN) algorithms. Then the processed spectral reflectance information and observational data for synchronous leaf nitrogen content were used to construct an inversion model used to predict leaf nitrogen content. Nine inversion models were constructed based on different dimensionality reduction and regression methods. Based on the coefficient of determination (R2) and root mean square error (RMSE), the accuracy of each model was tested. The main results follow: (1) Dimensionality reduction processing of hyperspectral data can effectively prevent data from overfitting, limit the correlation between adjacent frequency bands, and reduce data redundancy. An EN dimensionality reduction algorithm (EN-Partial Least Squares Regression (PLSR)) model R2 = 0.96, RMSE = 0.19) was better than a SPA (SPA-PLSR model R2 = 0.90, RMSE = 0.26) and LASSO (LASSO-PLSR model R2 = 0.89, RMSE = 0.37) dimensionality reduction algorithm. (2) For the same dimensionality reduction method, the accuracy of the regression model based on PLSR was higher than that of other models. Among the nine inversion models in this paper, the EN-PLSR inversion model has the best fitting effect (R2 = 0.96, RMSE = 0.19). (3) Obvious changes in nitrogen content have little effect on the overall hyperspectral reflectance curve. This study provides a reference for high-efficiency and non-destructive testing of corn nitrogen content using hyperspectral technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
whatever应助luoshi采纳,获得10
刚刚
刚刚
科研通AI5应助徐徐采纳,获得10
1秒前
shouyu29应助MADKAI采纳,获得10
1秒前
shouyu29应助MADKAI采纳,获得10
1秒前
Lucas应助MADKAI采纳,获得10
1秒前
Vii应助MADKAI采纳,获得10
1秒前
李爱国应助MADKAI采纳,获得10
1秒前
李健应助MADKAI采纳,获得10
1秒前
烟花应助MADKAI采纳,获得20
1秒前
香蕉觅云应助MADKAI采纳,获得10
1秒前
科研通AI2S应助MADKAI采纳,获得10
1秒前
Singularity应助MADKAI采纳,获得10
1秒前
2秒前
2秒前
赘婿应助GGZ采纳,获得10
2秒前
阿盛完成签到,获得积分10
2秒前
2秒前
怕孤单的含羞草完成签到 ,获得积分10
3秒前
Muuu发布了新的文献求助10
3秒前
仁爱的乐枫完成签到,获得积分10
4秒前
4秒前
金润完成签到,获得积分10
5秒前
ZZ完成签到,获得积分10
5秒前
AteeqBaloch发布了新的文献求助10
6秒前
PaulLao完成签到,获得积分10
6秒前
6秒前
fleee发布了新的文献求助10
6秒前
6秒前
7秒前
Luyao发布了新的文献求助10
7秒前
海派Hi完成签到 ,获得积分10
7秒前
依依完成签到 ,获得积分10
8秒前
李健的小迷弟应助库外采纳,获得10
8秒前
yi完成签到 ,获得积分10
8秒前
kbj发布了新的文献求助10
8秒前
10秒前
佳言2009完成签到,获得积分10
11秒前
汉堡包应助漂亮的初蓝采纳,获得10
11秒前
hohokuz发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762