已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-start Evolutionary Nonlinear OpTimizeR (MENOTR): A hybrid parameter optimization toolbox

工具箱 计算机科学 集合(抽象数据类型) 估计理论 算法 数学优化 数据挖掘 数学 程序设计语言
作者
Zachariah M. Ingram,Nathaniel W. Scull,David A. Schneider,Aaron L. Lucius
出处
期刊:Biophysical Chemistry [Elsevier]
卷期号:279: 106682-106682 被引量:31
标识
DOI:10.1016/j.bpc.2021.106682
摘要

Parameter optimization or "data fitting" is a computational process that identifies a set of parameter values that best describe an experimental data set. Parameter optimization is commonly carried out using a computer program utilizing a non-linear least squares (NLLS) algorithm. These algorithms work by continuously refining a user supplied initial guess resulting in a systematic increase in the goodness of fit. A well-understood problem with this class of algorithms is that in the case of models with correlated parameters the optimized output parameters are initial guess dependent. This dependency can potentially introduce user bias into the resultant analysis. While many optimization programs exist, few address this dilemma. Here we present a data analysis tool, MENOTR, that is capable of overcoming the initial guess dependence in parameter optimization. Several case studies with published experimental data are presented to demonstrate the capabilities of this tool. The results presented here demonstrate how to effectively overcome the initial guess dependence of NLLS leading to greater confidence that the resultant optimized parameters are the best possible set of parameters to describe an experimental data set. While the optimization strategies implemented within MENOTR are not entirely novel, the application of these strategies to optimize parameters in kinetic and thermodynamic biochemical models is uncommon. MENOTR was designed to require minimal modification to accommodate a new model making it immediately accessible to researchers with a limited programming background. We anticipate that this toolbox can be used in a wide variety of data analysis applications. Prototype versions of this toolbox have been used in a number of published investigations already, as well as ongoing work with chemical-quenched flow, stopped-flow, and molecular tweezers data sets. STATEMENT OF SIGNIFICANCE: Non-linear least squares (NLLS) is a common form of parameter optimization in biochemistry kinetic and thermodynamic investigations These algorithms are used to fit experimental data sets and report corresponding parameter values. The algorithms are fast and able to provide good quality solutions for models involving few parameters. However, initial guess dependence is a well-known drawback of this optimization strategy that can introduce user bias. An alternative method of parameter optimization are genetic algorithms (GA). Genetic algorithms do not have an initial guess dependence but are slow at arriving at the best set of fit parameters. Here, we present MENOTR, a parameter optimization toolbox utilizing a hybrid GA/NLLS algorithm. The toolbox maximizes the strength of each strategy while minimizing the inherent drawbacks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱听歌的悒完成签到 ,获得积分10
1秒前
共享精神应助tleeny采纳,获得10
2秒前
尺子尺子和池子完成签到 ,获得积分10
3秒前
5秒前
Jasper应助Paradox采纳,获得10
5秒前
Criminology34应助GLM采纳,获得10
9秒前
西蜀小吏发布了新的文献求助10
11秒前
彭于晏应助Chen采纳,获得10
11秒前
claud完成签到 ,获得积分10
12秒前
等待盼雁完成签到,获得积分10
14秒前
完美世界应助pho采纳,获得10
17秒前
偷看星星完成签到 ,获得积分10
17秒前
19秒前
19秒前
freedom完成签到,获得积分20
20秒前
yu完成签到 ,获得积分10
20秒前
muni完成签到,获得积分10
20秒前
浮光应助7Ham采纳,获得20
22秒前
youyou发布了新的文献求助10
23秒前
归海梦岚完成签到,获得积分0
24秒前
tleeny发布了新的文献求助10
24秒前
昏睡的科研小白完成签到 ,获得积分10
26秒前
寂寞的尔丝完成签到 ,获得积分10
27秒前
28秒前
科研通AI2S应助Uranus采纳,获得10
31秒前
安详的亦丝完成签到 ,获得积分10
32秒前
张雨露发布了新的文献求助10
33秒前
35秒前
36秒前
丸子完成签到,获得积分10
36秒前
完美世界应助chruse采纳,获得10
37秒前
37秒前
小马甲应助Wish采纳,获得10
38秒前
年轻时光发布了新的文献求助10
38秒前
40秒前
40秒前
41秒前
fei979发布了新的文献求助10
42秒前
lalkiii完成签到,获得积分10
42秒前
felix发布了新的文献求助10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5815057
求助须知:如何正确求助?哪些是违规求助? 5922985
关于积分的说明 15542066
捐赠科研通 4937805
什么是DOI,文献DOI怎么找? 2659360
邀请新用户注册赠送积分活动 1605662
关于科研通互助平台的介绍 1560236