Multi-start Evolutionary Nonlinear OpTimizeR (MENOTR): A hybrid parameter optimization toolbox

工具箱 计算机科学 集合(抽象数据类型) 估计理论 算法 数学优化 数据挖掘 数学 程序设计语言
作者
Zachariah M. Ingram,Nathaniel W. Scull,David A. Schneider,Aaron L. Lucius
出处
期刊:Biophysical Chemistry [Elsevier BV]
卷期号:279: 106682-106682 被引量:31
标识
DOI:10.1016/j.bpc.2021.106682
摘要

Parameter optimization or "data fitting" is a computational process that identifies a set of parameter values that best describe an experimental data set. Parameter optimization is commonly carried out using a computer program utilizing a non-linear least squares (NLLS) algorithm. These algorithms work by continuously refining a user supplied initial guess resulting in a systematic increase in the goodness of fit. A well-understood problem with this class of algorithms is that in the case of models with correlated parameters the optimized output parameters are initial guess dependent. This dependency can potentially introduce user bias into the resultant analysis. While many optimization programs exist, few address this dilemma. Here we present a data analysis tool, MENOTR, that is capable of overcoming the initial guess dependence in parameter optimization. Several case studies with published experimental data are presented to demonstrate the capabilities of this tool. The results presented here demonstrate how to effectively overcome the initial guess dependence of NLLS leading to greater confidence that the resultant optimized parameters are the best possible set of parameters to describe an experimental data set. While the optimization strategies implemented within MENOTR are not entirely novel, the application of these strategies to optimize parameters in kinetic and thermodynamic biochemical models is uncommon. MENOTR was designed to require minimal modification to accommodate a new model making it immediately accessible to researchers with a limited programming background. We anticipate that this toolbox can be used in a wide variety of data analysis applications. Prototype versions of this toolbox have been used in a number of published investigations already, as well as ongoing work with chemical-quenched flow, stopped-flow, and molecular tweezers data sets. STATEMENT OF SIGNIFICANCE: Non-linear least squares (NLLS) is a common form of parameter optimization in biochemistry kinetic and thermodynamic investigations These algorithms are used to fit experimental data sets and report corresponding parameter values. The algorithms are fast and able to provide good quality solutions for models involving few parameters. However, initial guess dependence is a well-known drawback of this optimization strategy that can introduce user bias. An alternative method of parameter optimization are genetic algorithms (GA). Genetic algorithms do not have an initial guess dependence but are slow at arriving at the best set of fit parameters. Here, we present MENOTR, a parameter optimization toolbox utilizing a hybrid GA/NLLS algorithm. The toolbox maximizes the strength of each strategy while minimizing the inherent drawbacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助greentea采纳,获得10
1秒前
2秒前
Hollen发布了新的文献求助50
2秒前
英俊的铭应助903869831@qq.com采纳,获得10
2秒前
一一完成签到 ,获得积分10
3秒前
yuying完成签到,获得积分10
4秒前
充电宝应助super chan采纳,获得10
4秒前
5秒前
5秒前
马倩茹发布了新的文献求助10
6秒前
秤子发布了新的文献求助10
8秒前
科研通AI5应助早上好采纳,获得10
9秒前
randi发布了新的文献求助10
9秒前
10秒前
咯噔发布了新的文献求助10
11秒前
Whim应助笨狗读书采纳,获得30
12秒前
小二郎应助小余采纳,获得10
13秒前
滴答滴答完成签到,获得积分10
13秒前
LuoZuoZhi完成签到,获得积分10
14秒前
wdlc发布了新的文献求助100
14秒前
科研通AI5应助xwz626采纳,获得30
14秒前
15秒前
16秒前
田様应助chrysan采纳,获得10
16秒前
科研通AI5应助罗拉采纳,获得10
16秒前
super chan发布了新的文献求助10
18秒前
谦让的抽屉完成签到,获得积分20
19秒前
滴答滴答发布了新的文献求助10
20秒前
早上好发布了新的文献求助10
21秒前
Ava应助张育程采纳,获得10
21秒前
小马甲应助秤子采纳,获得10
22秒前
xqy完成签到 ,获得积分10
22秒前
连烙完成签到,获得积分20
23秒前
25秒前
26秒前
夏末关注了科研通微信公众号
26秒前
123发布了新的文献求助10
28秒前
连烙发布了新的文献求助10
29秒前
烤鸭完成签到 ,获得积分10
29秒前
荒糖发布了新的文献求助10
30秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740949
求助须知:如何正确求助?哪些是违规求助? 3283763
关于积分的说明 10036623
捐赠科研通 3000513
什么是DOI,文献DOI怎么找? 1646539
邀请新用户注册赠送积分活动 783771
科研通“疑难数据库(出版商)”最低求助积分说明 750427