Collaborative Image Synthesis and Disease Diagnosis for Classification of Neurodegenerative Disorders with Incomplete Multi-modal Neuroimages

情态动词 人工智能 计算机科学 图像(数学) 模式识别(心理学) 上下文图像分类 疾病 自然语言处理 特征(语言学) 计算机视觉 机器学习 神经影像学 病理 医学 化学 高分子化学
作者
Yongsheng Pan,Yuanyuan Chen,Dinggang Shen,Yong Xia
出处
期刊:Lecture Notes in Computer Science 卷期号:: 480-489 被引量:1
标识
DOI:10.1007/978-3-030-87240-3_46
摘要

The missing data issue is a common problem in multi-modal neuroimage (e.g., MRI and PET) based diagnosis of neurodegenerative disorders. Although various generative adversarial networks (GANs) have been developed to impute the missing data, most current solutions treat the image imputation and disease diagnosis as two standalone tasks without considering the impact of diagnosis on image synthesis, leading to less competent synthetic images to the diagnosis task. In this paper, we propose the collaborative diagnosis-synthesis framework (CDSF) for joint missing neuroimage imputation and multi-modal diagnosis of neurodegenerative disorders. Under the CDSF framework, there is an image synthesis module (ISM) and a multi-modal diagnosis module (MDM), which are trained in a collaborative manner. Specifically, ISM is trained under the supervision of MDM, which poses the feature-consistent constraint to the cross-modality image synthesis, while MDM learns the disease-related multi-modal information from both real and synthetic multi-modal neuroimages. We evaluated our CDSF model against five image synthesis methods and three multi-modal diagnosis models on an ADNI datasets with 1464 subjects. Our results suggest that the proposed CDSF model not only generates neuroimages with higher quality, but also achieves the state-of-the-art performance in AD identification and MCI-to-AD conversion prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
与非完成签到,获得积分10
刚刚
美好灰狼完成签到 ,获得积分10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
2秒前
2秒前
CCCr完成签到,获得积分10
2秒前
2秒前
FashionBoy应助科研通管家采纳,获得20
2秒前
张zhang应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
打打应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
张zhang应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
orixero应助与非采纳,获得10
5秒前
杨乃彬完成签到,获得积分10
5秒前
刘坦苇发布了新的文献求助10
6秒前
李健应助跳跃的摩托采纳,获得10
7秒前
7秒前
laskxd发布了新的文献求助10
8秒前
康舟完成签到,获得积分10
8秒前
9秒前
李爱国应助满意的嵩采纳,获得10
10秒前
11秒前
li完成签到,获得积分20
11秒前
Chen272发布了新的文献求助10
11秒前
刘博宇完成签到,获得积分20
11秒前
12秒前
huang发布了新的文献求助10
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459437
求助须知:如何正确求助?哪些是违规求助? 3053861
关于积分的说明 9039026
捐赠科研通 2743219
什么是DOI,文献DOI怎么找? 1504698
科研通“疑难数据库(出版商)”最低求助积分说明 695389
邀请新用户注册赠送积分活动 694664