创伤性脑损伤
Wnt信号通路
血脑屏障
血管生成
神经营养因子
细胞生物学
癌症研究
血管内皮生长因子
埃文斯蓝
连环蛋白
医学
生物
神经科学
信号转导
内科学
中枢神经系统
受体
血管内皮生长因子受体
精神科
作者
Ruili Guo,Xue Wang,Yani Fang,Xiongjian Chen,Kun Chen,Wenting Huang,Jun Chen,Jian Hu,Fei Liang,Jingting Du,Confidence Dordoe,Xianxi Tian,Li Lin
标识
DOI:10.1016/j.biopha.2021.112200
摘要
The pathology of cerebrovascular disorders takes an important role in traumatic brain injury (TBI) by increasing intracranial pressure. Fibroblast growth factor 20 (FGF20) is a brain-derived neurotrophic factor, that has been shown to play an important role in the survival of dopaminergic neurons and the treatment of Parkinson's disease (PD). However, little is known about the role of FGF20 in the treatment of TBI and its underlying mechanism. The purpose of this study was to evaluate the protective effect of recombinant human FGF20 (rhFGF20) on protecting cerebral blood vessels after TBI. In this study, we indicated that rhFGF20 could reduce brain edema, Evans blue penetration and upregulated the expression of blood-brain barrier (BBB)-related tight junction (TJ) proteins, exerting a protective effect on the BBB in vivo after TBI. In the TBI repair phase, rhFGF20 promoted angiogenesis, neurological and cognitive function recovery. In tumor necrosis factor-α (TNF-α)-induced human brain microvascular endothelial cells (hCMEC/D3), an in vitro BBB disruption model, rhFGF20 reversed the impairment in cell migration and tube formation induced by TNF-α. Moreover, in both the TBI mouse model and the in vitro model, rhFGF20 increased the expression of β-catenin and GSK3β, which are the two key regulators in the Wnt/β-catenin signaling pathway. In addition, the Wnt/β-catenin inhibitor IWR-1-endo significantly reversed the effects of rhFGF20. These results indicate that rhFGF20 may prevent vascular repair and angiogenesis through the Wnt/β-catenin pathway.
科研通智能强力驱动
Strongly Powered by AbleSci AI