丝绸
材料科学
蜘蛛丝
膜
极限抗拉强度
静电纺丝
纤维
聚己内酯
化学工程
复合材料
聚合物
化学
生物化学
工程类
作者
Jie Zhang,Qiupin Jia,Er Meng,Qing Meng
标识
DOI:10.1088/1748-605x/ac2ab7
摘要
Spider silk is a protein fiber with the highest strength and elasticity known in nature, even higher than that of silkworm silk. It was a biological and technical reserve material with great potential. However, the low yield of natural spider silk limits the application of spider silk, and the development of genetic engineering provides opportunities for the mass production of spider silk. We constructed a mini-recombinant spidroin NRC based on spider silk gene fromAraneus ventricosusand successfully expressed it through Prokaryotic expression that provide a high production for application using electrospinning, which is a mature technique to produce micro-nano scale fibers as thin as natural spider silks. By blending the purified and lyophilized NRC with polycaprolactone (PCL) in different mass ratio for electrospinning, different electrospun membranes were obtained, and then characterized in terms of morphology, chemical structure, mechanical and Schwann cell proliferation. Compared the difference between polycaprolactone (PCL) and NRC, the fiber diameter decreased from 1.0779 μm to 0.5785 μm, water contact angel decreased from 104.1 ± 2° to 56.9 ± 5°, and elongation decreased from 240.97 ± 89% to 37.76 ± 13%, while tensile strength increased from 1.74 ± 1.2 MPa to 3.18 ± 0.9 MPa and Young's Module increased from 3.05 ± 1.6 MPa to 16.54 ± 6.7 MPa. In this study, we obtained a thinner fiber, hydrophilicity and high strengthen electrospinning spidroin contained membrane, which can also promote Schwann cell proliferation and adhesion.
科研通智能强力驱动
Strongly Powered by AbleSci AI