Topological materials are of great significance in the chemistry, physics, and engineering communities due to their implications for fundamental and applied science. They are solid-state materials where electrons behave atypically, acting as analogs to particles in high-energy physics. In addition, topological materials are impactful in spintronics, catalysis, and quantum information science. However, we do not yet have a holistic understanding of the nature of chemical bonding in these materials, despite growing evidence that it plays a vital role. In this review, we explore how delocalized bonding can lead to topological electronic structures in one-, two-, and three-dimensional systems. We highlight the successes of chemical intuition in polymeric and square-net systems and the potential for one- and three-dimensional structures to follow.