A hybrid deep learning framework for urban air quality forecasting

计算机科学 人工智能 过度拟合 超参数 深度学习 机器学习 计算 特征工程 粒子群优化 预处理器 空气质量指数 人工神经网络 算法 物理 气象学
作者
Apeksha Aggarwal,Durga Toshniwal
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:329: 129660-129660 被引量:37
标识
DOI:10.1016/j.jclepro.2021.129660
摘要

Deep learning models address air quality forecasting problems far more effectively and efficiently than the traditional machine learning models. Specifically, Long Short-Term Memory networks (LSTMs) constitute a significant breakthrough in understanding the complex sequential behavioral dependencies of the time series. Further, LSTM models justify well with the speed–accuracy tradeoff, among other deep learning models. However, there are several limitations of such deep learning models. Firstly, the addition of multiple hidden layers, on the one hand, improves the performance but, on the other hand, requires extensive hardware and computation capabilities. Secondly, most of the previous works that utilized LSTMs for air quality forecasting do not consider the issue of optimal hyperparameter calibration. While deciding the gradient, network learning parameters should be so fixed such that the model does not underfit or overfit. To address these issues, a stochastic optimization algorithm, mimicking the pattern of flocking birds, is utilized to find the most fitting solution in the parameter search space. Particle swarm optimization setup primarily models varying particles representing parameters to reach an optimum state. Furthermore, the Spatio-temporal instabilities of LSTM models are addressed in this work using preprocessing, segmentation and feature engineering to understand seasonal and trend characteristics along with the Spatio-temporal correlation of the time series. The proposed model is employed on the air quality dataset of 15 locations in India. A variety of experiments are performed to prove the superiority of the proposed method. Firstly, a comparison with traditional sequential models and deep learning models is done. Secondly, results are further evaluated over several existing benchmark dataset samples. Results suggest that the proposed method outperforms existing forecasting models when evaluated over a variety of performance metrics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
小蘑菇应助Islet采纳,获得10
1秒前
mjje发布了新的文献求助10
1秒前
miksimet2005发布了新的文献求助10
2秒前
Owen应助Rixxed采纳,获得10
2秒前
小菜狗发布了新的文献求助10
2秒前
岳岳岳发布了新的文献求助10
2秒前
小王时完成签到,获得积分10
2秒前
科研通AI2S应助平淡凝竹采纳,获得10
3秒前
terry发布了新的文献求助10
3秒前
Littboshi发布了新的文献求助50
4秒前
糟糕的颜完成签到 ,获得积分10
5秒前
项人发布了新的文献求助10
5秒前
tangyu12发布了新的文献求助10
8秒前
wanci应助茶米采纳,获得10
8秒前
朴实颤发布了新的文献求助10
9秒前
9秒前
善学以致用应助meng采纳,获得10
9秒前
山茶完成签到 ,获得积分20
9秒前
lkkkkkk完成签到,获得积分20
10秒前
11秒前
星辰大海应助ljh采纳,获得10
11秒前
DHY发布了新的文献求助30
11秒前
xinxin发布了新的文献求助10
11秒前
11秒前
可靠的安寒完成签到,获得积分10
12秒前
鲤鱼翼完成签到 ,获得积分10
12秒前
Vannie完成签到,获得积分10
12秒前
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
星辰大海应助Ashore采纳,获得10
14秒前
14秒前
rengar完成签到,获得积分10
14秒前
王诗翔完成签到,获得积分10
14秒前
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784558
求助须知:如何正确求助?哪些是违规求助? 5682922
关于积分的说明 15464566
捐赠科研通 4913664
什么是DOI,文献DOI怎么找? 2644848
邀请新用户注册赠送积分活动 1592770
关于科研通互助平台的介绍 1547187