A hybrid deep learning framework for urban air quality forecasting

计算机科学 人工智能 过度拟合 超参数 深度学习 机器学习 计算 特征工程 粒子群优化 预处理器 空气质量指数 人工神经网络 算法 物理 气象学
作者
Apeksha Aggarwal,Durga Toshniwal
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:329: 129660-129660 被引量:37
标识
DOI:10.1016/j.jclepro.2021.129660
摘要

Deep learning models address air quality forecasting problems far more effectively and efficiently than the traditional machine learning models. Specifically, Long Short-Term Memory networks (LSTMs) constitute a significant breakthrough in understanding the complex sequential behavioral dependencies of the time series. Further, LSTM models justify well with the speed–accuracy tradeoff, among other deep learning models. However, there are several limitations of such deep learning models. Firstly, the addition of multiple hidden layers, on the one hand, improves the performance but, on the other hand, requires extensive hardware and computation capabilities. Secondly, most of the previous works that utilized LSTMs for air quality forecasting do not consider the issue of optimal hyperparameter calibration. While deciding the gradient, network learning parameters should be so fixed such that the model does not underfit or overfit. To address these issues, a stochastic optimization algorithm, mimicking the pattern of flocking birds, is utilized to find the most fitting solution in the parameter search space. Particle swarm optimization setup primarily models varying particles representing parameters to reach an optimum state. Furthermore, the Spatio-temporal instabilities of LSTM models are addressed in this work using preprocessing, segmentation and feature engineering to understand seasonal and trend characteristics along with the Spatio-temporal correlation of the time series. The proposed model is employed on the air quality dataset of 15 locations in India. A variety of experiments are performed to prove the superiority of the proposed method. Firstly, a comparison with traditional sequential models and deep learning models is done. Secondly, results are further evaluated over several existing benchmark dataset samples. Results suggest that the proposed method outperforms existing forecasting models when evaluated over a variety of performance metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
呼呼兔完成签到,获得积分10
刚刚
闲花煮茶完成签到,获得积分10
1秒前
bkagyin应助奔波霸采纳,获得10
1秒前
1秒前
bibibi完成签到 ,获得积分10
1秒前
chen发布了新的文献求助10
1秒前
无花果应助谁在说话采纳,获得10
2秒前
ggg完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
CJZ发布了新的文献求助10
5秒前
李健应助黄昏采纳,获得30
5秒前
星辰大海应助现实的幻露采纳,获得10
5秒前
Yangyue发布了新的文献求助10
5秒前
profit完成签到 ,获得积分10
6秒前
CatC完成签到,获得积分10
6秒前
比奇堡悍匪派大星完成签到,获得积分10
6秒前
7秒前
8秒前
跳跃乘风完成签到,获得积分10
8秒前
哇卡哇卡完成签到,获得积分10
8秒前
柚子发布了新的文献求助10
8秒前
FashionBoy应助斯人采纳,获得10
9秒前
9秒前
畅快以菱完成签到,获得积分10
10秒前
10秒前
wo完成签到,获得积分10
11秒前
kaka发布了新的文献求助20
11秒前
mrbcy关注了科研通微信公众号
11秒前
12秒前
小二郎应助淡淡的世倌采纳,获得30
12秒前
今后应助酸柠檬本檬采纳,获得10
12秒前
Calvin发布了新的文献求助10
12秒前
13秒前
qsw完成签到,获得积分10
14秒前
NexusExplorer应助Vicky采纳,获得10
14秒前
典雅的鸡发布了新的文献求助30
14秒前
哈哈哈哈发布了新的文献求助10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011501
求助须知:如何正确求助?哪些是违规求助? 3551133
关于积分的说明 11307791
捐赠科研通 3285391
什么是DOI,文献DOI怎么找? 1811040
邀请新用户注册赠送积分活动 886767
科研通“疑难数据库(出版商)”最低求助积分说明 811636