A hybrid deep learning framework for urban air quality forecasting

计算机科学 人工智能 过度拟合 超参数 深度学习 机器学习 计算 特征工程 粒子群优化 预处理器 空气质量指数 人工神经网络 算法 物理 气象学
作者
Apeksha Aggarwal,Durga Toshniwal
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:329: 129660-129660 被引量:37
标识
DOI:10.1016/j.jclepro.2021.129660
摘要

Deep learning models address air quality forecasting problems far more effectively and efficiently than the traditional machine learning models. Specifically, Long Short-Term Memory networks (LSTMs) constitute a significant breakthrough in understanding the complex sequential behavioral dependencies of the time series. Further, LSTM models justify well with the speed–accuracy tradeoff, among other deep learning models. However, there are several limitations of such deep learning models. Firstly, the addition of multiple hidden layers, on the one hand, improves the performance but, on the other hand, requires extensive hardware and computation capabilities. Secondly, most of the previous works that utilized LSTMs for air quality forecasting do not consider the issue of optimal hyperparameter calibration. While deciding the gradient, network learning parameters should be so fixed such that the model does not underfit or overfit. To address these issues, a stochastic optimization algorithm, mimicking the pattern of flocking birds, is utilized to find the most fitting solution in the parameter search space. Particle swarm optimization setup primarily models varying particles representing parameters to reach an optimum state. Furthermore, the Spatio-temporal instabilities of LSTM models are addressed in this work using preprocessing, segmentation and feature engineering to understand seasonal and trend characteristics along with the Spatio-temporal correlation of the time series. The proposed model is employed on the air quality dataset of 15 locations in India. A variety of experiments are performed to prove the superiority of the proposed method. Firstly, a comparison with traditional sequential models and deep learning models is done. Secondly, results are further evaluated over several existing benchmark dataset samples. Results suggest that the proposed method outperforms existing forecasting models when evaluated over a variety of performance metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lymzc发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
tuanheqi应助Jodie采纳,获得100
1秒前
Fiona完成签到 ,获得积分10
1秒前
汉堡包应助阿瓦达啃大瓜采纳,获得10
2秒前
2秒前
小七发布了新的文献求助10
3秒前
3秒前
幸福的向彤完成签到,获得积分10
4秒前
Owen应助232187218采纳,获得10
5秒前
6秒前
6秒前
y0uanzheng完成签到 ,获得积分10
6秒前
Little2完成签到,获得积分10
7秒前
统统闪开发布了新的文献求助10
7秒前
8秒前
Xie完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
11秒前
dzbb发布了新的文献求助10
12秒前
HYJ完成签到,获得积分20
12秒前
sun发布了新的文献求助30
12秒前
量子星尘发布了新的文献求助10
12秒前
时冬冬完成签到,获得积分0
12秒前
ysw发布了新的文献求助10
13秒前
阿瓦达啃大瓜完成签到,获得积分20
14秒前
XiangQin发布了新的文献求助10
14秒前
15秒前
15秒前
科研狗关注了科研通微信公众号
15秒前
15秒前
16秒前
丽丽发布了新的文献求助10
16秒前
16秒前
16秒前
李春阳发布了新的文献求助10
16秒前
茅十八完成签到,获得积分10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5435804
求助须知:如何正确求助?哪些是违规求助? 4548006
关于积分的说明 14211638
捐赠科研通 4468203
什么是DOI,文献DOI怎么找? 2448968
邀请新用户注册赠送积分活动 1439889
关于科研通互助平台的介绍 1416503