Mechanisms of Si Nanoparticle Formation by Molten Salt Magnesiothermic Reduction of Silica for Lithium‐ion Battery Anodes

材料科学 化学工程 纳米颗粒 锂(药物) 共晶体系 熔盐 微观结构 阳极 锂离子电池 电池(电) 电极 电解质 纳米技术 化学 冶金 工程类 内分泌学 物理化学 物理 功率(物理) 医学 量子力学
作者
Ali Ansari Hamedani,Cleva W. Ow‐Yang,Serap Hayat Soytaş
出处
期刊:ChemElectroChem [Wiley]
卷期号:8 (16): 3181-3191 被引量:14
标识
DOI:10.1002/celc.202100683
摘要

Abstract Molten salt methods enable the synthesis of Si nanostructures by moderating the thermal energy evolved in highly exothermic magnesiothermic reduction reactions (MRR) of silica. Due to their cost‐effectiveness and scalability, these techniques are well suited for producing nanoscale Si for a number of applications, including energy storage. To control the microstructure morphology and particle size, it is necessary to understand the formation mechanism of the Si produced. By evaluating the time‐resolved phase evolution, when NaCl moderates the thermal energy generated by MRR of SiO 2 , we elucidate 3 parallel interfacial reaction mechanisms yielding Si nanoparticles – via Mg vapor, Mg‐rich eutectic liquid, and Mg ions dissolved in molten NaCl. These individual Si nanoparticles offer a striking contrast to the typical by‐product of MRR of SiO 2 with and without NaCl, which yields a 3‐dimensional (3‐D) porous network of sintered Si nanoparticles. Lithium‐ion battery half‐cells with electrodes composed of individual Si nanoparticles showed a greater first‐cycle irreversible discharge capacity and faster capacity loss over the first 5 cycles at a current density of 200 mA g −1 compared to half‐cells with electrodes of a porous 3‐D Si network–indicative due to thicker solid electrolyte interphase (SEI) formation on individual particles. At a higher current rate of 400 mA g −1 , once SEI formation and activation of Si are established, both cells exhibit a similar capacity retention rate over 100 cycles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
rei402发布了新的文献求助10
1秒前
感动听白完成签到,获得积分10
1秒前
大胆初音发布了新的文献求助10
1秒前
1秒前
机智阿智发布了新的文献求助10
1秒前
1秒前
天天快乐应助猪猪hero采纳,获得10
1秒前
2秒前
文若完成签到,获得积分10
2秒前
斯文败类应助chenxi采纳,获得10
2秒前
www发布了新的文献求助10
2秒前
打打应助tly采纳,获得10
2秒前
2秒前
3秒前
3秒前
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
3秒前
BowieHuang应助科研通管家采纳,获得10
4秒前
Marshall发布了新的文献求助30
4秒前
Niki发布了新的文献求助20
4秒前
Akim应助科研通管家采纳,获得10
4秒前
嘿嘿应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
4秒前
所所应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719629
求助须知:如何正确求助?哪些是违规求助? 5257097
关于积分的说明 15289239
捐赠科研通 4869416
什么是DOI,文献DOI怎么找? 2614807
邀请新用户注册赠送积分活动 1564797
关于科研通互助平台的介绍 1521994