作者
Xiaojuan Peng,Mingqian Hao,Yingchun Zhao,Yuan Cai,Xueyan Chen,Huiying Chen,Shouxin Zhang,Ling Dong,Xinglong Liu,Chuanbo Ding,Wencong Liu,Min Yang,Yunqing Luo
摘要
Panax ginseng (PG) and red ginseng (RG) are considered to be effective anti-aging treatments. However, evidence of their therapeutic mechanisms and difference in anti-aging effects is lacking.To explore the potential therapeutic mechanisms of RG and PG in brain damage in D-Gal-induced aging mice, and evaluate the difference in anti-aging effects caused by their compositional differences.We first tested the chemical components in PG and RG. In D-Gal aging mouse model, RG and PG (800 mg/kg) were orally administered for 9 weeks. The mice performed the Radial Arm Maze (RAM) behavior test. We collected blood, brain tissue, and fecal samples and performed biochemical analysis, histological examination, western blot, and Illumina MiSeq sequencing analysis.The results of component analysis showed that the total polyphenols and rare ginsenosides were present in RG in 3.2, and 2.2 fold greater concentrations, respectively, compared to PG, while the proportion of non-starch polysaccharides in the crude polysaccharides of RG was 1.94 fold greater than that of PG. In D-Gal-induced aging mice, both PG and RG could prevent the increase in acetylcholinesterase (AChE), and malondialdehyde (MDA) levels, and improved the expression of superoxide dismutase (SOD), and catalase (CAT) in the serum. Meanwhile, both PG and RG could ameliorate brain tissue architecture and behavioral trial. In addition, the D-Gal-induced translocation of nuclear factor-κB (NF-κB), as well as activation of the pro-apoptotic factors Caspase-3 and the PI3K/Akt pathways were inhibited by PG and RG. Overall, both PG and RG exerted anti-aging effects, with RG stronger than PG. Finally, although both PG and RG regulated the diversity of gut microbes, RG appeared to aggravate the increase in probiotics, such as Bifidobacterium and Akkermania, and the decrease in inflammatory bacteria to a greater extent compared to PG.Our results suggest that RG is more conducive to delay the D-Gal-induced aging process than PG, with possible mechanisms including beneficial changes in brain structure, cognitive functions, oxidative stress inhibition, and gut microbiome structure and diversity than PG, These mechanisms may rely on the presence of more total polyphenols, rare ginsenosides and non-starch polysaccharides in RG.