Growth-Based, High-Throughput Selection for NADH Preference in an Oxygen-Dependent Biocatalyst

定向进化 蛋白质工程 辅因子 单加氧酶 饱和突变 合理设计 突变 定向分子进化 代谢工程 生物化学 合成生物学 大肠杆菌 加氧酶 生物 化学 突变体 计算生物学 细胞色素P450 基因 遗传学
作者
Sarah Maxel,Samer Saleh,Edward J. King,Derek Aspacio,Linyue Zhang,Ray Luo,Han Li
出处
期刊:ACS Synthetic Biology [American Chemical Society]
卷期号:10 (9): 2359-2370 被引量:12
标识
DOI:10.1021/acssynbio.1c00258
摘要

Cyclohexanone monooxygenases (CHMO) consume molecular oxygen and NADPH to catalyze the valuable oxidation of cyclic ketones. However, CHMO usage is restricted by poor stability and stringent specificity for NADPH. Efforts to engineer CHMO have been limited by the sensitivity of the enzyme to perturbations in conformational dynamics and long-range interactions that cannot be predicted. We demonstrate an aerobic, high-throughput growth selection platform in Escherichia coli for oxygenase evolution based on NADH redox balance. We applied this NADH-dependent selection to alter the cofactor specificity of CHMO to accept NADH, a less expensive cofactor than NADPH. We first identified the variant CHMO DTNP (S208D-K326T-K349N-L143P) with a ∼1200-fold relative cofactor specificity switch from NADPH to NADH compared to the wild type through semirational design. Molecular modeling suggests CHMO DTNP activity is driven by cooperative fine-tuning of cofactor contacts. Additional evolution of CHMO DTNP through random mutagenesis yielded the variant CHMO DTNPY with a ∼2900-fold relative specificity switch compared to the wild type afforded by an additional distal mutation, H163Y. These results highlight the difficulty in engineering functionally innovative variants from static models and rational designs, and the need for high throughput selection methods. Our introduced tools for oxygenase engineering accelerate the advancements of characteristics essential for industrial feasibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
赘婿应助LANER采纳,获得10
2秒前
HT完成签到,获得积分10
2秒前
王w发布了新的文献求助10
2秒前
Fan完成签到,获得积分10
2秒前
Allure完成签到 ,获得积分10
2秒前
Cys发布了新的文献求助10
3秒前
3秒前
爆米花应助ryen采纳,获得10
3秒前
陈婷婷CTT完成签到,获得积分10
3秒前
清欢发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
何火火完成签到,获得积分10
4秒前
cang发布了新的文献求助10
6秒前
pluto应助涔雨采纳,获得10
6秒前
7秒前
7秒前
yjh发布了新的文献求助10
7秒前
9秒前
sqx0720发布了新的文献求助10
9秒前
9秒前
lolo完成签到,获得积分10
10秒前
tylerconan发布了新的文献求助30
10秒前
MoGong完成签到,获得积分10
10秒前
稻子发布了新的文献求助10
12秒前
依然灬聆听完成签到,获得积分10
12秒前
lyl19880908完成签到,获得积分0
13秒前
14秒前
清梦发布了新的文献求助10
14秒前
16秒前
LANER发布了新的文献求助10
16秒前
领导范儿应助袁来如此采纳,获得100
16秒前
17秒前
ZhangYi发布了新的文献求助30
18秒前
小林太郎应助苗条安莲采纳,获得20
18秒前
19秒前
Jasper应助小于采纳,获得10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Host Response to Biomaterials 2000
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553842
求助须知:如何正确求助?哪些是违规求助? 3129593
关于积分的说明 9383508
捐赠科研通 2828757
什么是DOI,文献DOI怎么找? 1555168
邀请新用户注册赠送积分活动 725867
科研通“疑难数据库(出版商)”最低求助积分说明 715320