Semantic Context-Aware Image Style Transfer

计算机科学 语义计算 语义压缩 人工智能 背景(考古学) 匹配(统计) 自然语言处理 语义相似性 语义特征 情报检索 模式识别(心理学) 语义技术 数学 语义网 地理 统计 考古
作者
Yi-Sheng Liao,Chun-Rong Huang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 1911-1923 被引量:23
标识
DOI:10.1109/tip.2022.3149237
摘要

To provide semantic image style transfer results which are consistent with human perception, transferring styles of semantic regions of the style image to their corresponding semantic regions of the content image is necessary. However, when the object categories between the content and style images are not the same, it is difficult to match semantic regions between two images for semantic image style transfer. To solve the semantic matching problem and guide the semantic image style transfer based on matched regions, we propose a novel semantic context-aware image style transfer method by performing semantic context matching followed by a hierarchical local-to-global network architecture. The semantic context matching aims to obtain the corresponding regions between the content and style images by using context correlations of different object categories. Based on the matching results, we retrieve semantic context pairs where each pair is composed of two semantically matched regions from the content and style images. To achieve semantic context-aware style transfer, a hierarchical local-to-global network architecture, which contains two sub-networks including the local context network and the global context network, is proposed. The former focuses on style transfer for each semantic context pair from the style image to the content image, and generates a local style transfer image storing the detailed style feature representations for corresponding semantic regions. The latter aims to derive the stylized image by considering the content, the style, and the intermediate local style transfer images, so that inconsistency between different corresponding semantic regions can be addressed and solved. The experimental results show that the stylized results using our method are more consistent with human perception compared with the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丸子发布了新的文献求助10
刚刚
林秋沐完成签到 ,获得积分10
刚刚
刚刚
猪猪hero发布了新的文献求助10
1秒前
充电宝应助旺旺采纳,获得10
2秒前
2秒前
2秒前
北北斤完成签到 ,获得积分10
2秒前
2秒前
2秒前
3秒前
欧大大发布了新的文献求助30
3秒前
科研通AI2S应助醉熏的灵采纳,获得10
3秒前
最专业发布了新的文献求助10
3秒前
莉莉发布了新的文献求助10
4秒前
universe_hhy完成签到,获得积分10
5秒前
彭于晏应助hhhh采纳,获得10
5秒前
云歇雨住完成签到,获得积分10
6秒前
Michelle发布了新的文献求助10
7秒前
ZQZ发布了新的文献求助10
8秒前
8秒前
imxiaobing完成签到,获得积分10
9秒前
luo发布了新的文献求助10
9秒前
10秒前
轻松方盒完成签到,获得积分10
10秒前
10秒前
情怀应助狂野白梅采纳,获得10
10秒前
隐形曼青应助jtj采纳,获得10
11秒前
莫凡完成签到,获得积分20
12秒前
12秒前
平常的g发布了新的文献求助10
13秒前
13秒前
14秒前
田様应助夏夏霞采纳,获得10
14秒前
double完成签到 ,获得积分10
16秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
充电宝应助科研通管家采纳,获得10
16秒前
大个应助年轻代丝采纳,获得10
17秒前
shouyu29应助科研通管家采纳,获得10
17秒前
Owen应助科研通管家采纳,获得10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454862
求助须知:如何正确求助?哪些是违规求助? 3050097
关于积分的说明 9020280
捐赠科研通 2738771
什么是DOI,文献DOI怎么找? 1502291
科研通“疑难数据库(出版商)”最低求助积分说明 694453
邀请新用户注册赠送积分活动 693159