Traffic speed forecasting for urban roads: A deep ensemble neural network model

计算机科学 人工神经网络 人工智能 集合预报
作者
Wenqi Lu,Ziwei Yi,Renfei Wu,Yikang Rui,Bin Ran
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier]
卷期号:593: 126988-126988 被引量:8
标识
DOI:10.1016/j.physa.2022.126988
摘要

Real-time and accurate traffic state forecasting of urban roads is of great significance to improve traffic efficiency and optimize travel routes. However, future traffic state forecasting is still a challenging issue as it is influenced by several complicated factors including the dynamic spatio-temporal dependencies. Existing models usually consider the dependencies from the road sections with physical connections and ignore the road sections without physical connections. To this end, this paper proposes a deep ensemble neural network (DENN) model to improve the accuracy of urban traffic state forecasting by forming the road sections with high relevance into a virtual graph. To capture the spatio-temporal characteristics efficiently and simultaneously, the DENN integrates the graph convolutional neural network, bidirectional gated recurrent unit network, and a dense layer with attention mechanism into an end-to-end fashion. Validated on two ground-truth urban traffic speed datasets, the DENN model can well fit the nonlinear fluctuation of urban speed and indicate superior performance than the state-of-the-art benchmark methods in terms of prediction precision and robustness. • The virtual network is established by forming the road sections with high relevance into a virtual graph. • The graph convolutional network (GCN) is introduced to mine spatial features of the traffic flow from virtual graph. • Deep ensemble neural network is built by fusing a GCN, Bi-GRU network, and attention model into an end-to-end fashion. • Real-world urban traffic datasets are used to verify the proposed model in terms of prediction accuracy and stability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunc发布了新的文献求助10
2秒前
科研小菜完成签到 ,获得积分10
2秒前
SPark发布了新的文献求助10
3秒前
4秒前
嘿嘿应助陈研生采纳,获得10
4秒前
Lasse发布了新的文献求助10
5秒前
眯眯眼的宛白完成签到,获得积分20
7秒前
9秒前
我崽了你发布了新的文献求助30
10秒前
11秒前
fanf完成签到,获得积分10
12秒前
完美世界应助mayun95采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
ashin17发布了新的文献求助10
16秒前
16秒前
科研通AI2S应助cxw采纳,获得10
18秒前
18秒前
呼噜呼噜毛完成签到 ,获得积分10
20秒前
20秒前
烟花应助QinQin采纳,获得10
20秒前
JamesPei应助猪猪hero采纳,获得10
21秒前
21秒前
22秒前
黄颖完成签到,获得积分10
22秒前
24秒前
25秒前
CodeCraft应助Nora采纳,获得10
26秒前
灵巧帽子发布了新的文献求助20
27秒前
小吴同学发布了新的文献求助10
29秒前
黄芪2号完成签到,获得积分10
29秒前
29秒前
29秒前
Jes完成签到,获得积分10
30秒前
凶狠的棒棒糖关注了科研通微信公众号
30秒前
谦让雨柏完成签到 ,获得积分10
30秒前
30秒前
31秒前
31秒前
黄芪2号发布了新的文献求助10
32秒前
微笑翠桃发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637910
求助须知:如何正确求助?哪些是违规求助? 4744414
关于积分的说明 15000761
捐赠科研通 4796111
什么是DOI,文献DOI怎么找? 2562349
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481716