Traffic speed forecasting for urban roads: A deep ensemble neural network model

计算机科学 人工神经网络 人工智能 集合预报
作者
Wenqi Lu,Ziwei Yi,Renfei Wu,Yikang Rui,Bin Ran
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier]
卷期号:593: 126988-126988 被引量:8
标识
DOI:10.1016/j.physa.2022.126988
摘要

Real-time and accurate traffic state forecasting of urban roads is of great significance to improve traffic efficiency and optimize travel routes. However, future traffic state forecasting is still a challenging issue as it is influenced by several complicated factors including the dynamic spatio-temporal dependencies. Existing models usually consider the dependencies from the road sections with physical connections and ignore the road sections without physical connections. To this end, this paper proposes a deep ensemble neural network (DENN) model to improve the accuracy of urban traffic state forecasting by forming the road sections with high relevance into a virtual graph. To capture the spatio-temporal characteristics efficiently and simultaneously, the DENN integrates the graph convolutional neural network, bidirectional gated recurrent unit network, and a dense layer with attention mechanism into an end-to-end fashion. Validated on two ground-truth urban traffic speed datasets, the DENN model can well fit the nonlinear fluctuation of urban speed and indicate superior performance than the state-of-the-art benchmark methods in terms of prediction precision and robustness. • The virtual network is established by forming the road sections with high relevance into a virtual graph. • The graph convolutional network (GCN) is introduced to mine spatial features of the traffic flow from virtual graph. • Deep ensemble neural network is built by fusing a GCN, Bi-GRU network, and attention model into an end-to-end fashion. • Real-world urban traffic datasets are used to verify the proposed model in terms of prediction accuracy and stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美满夜绿发布了新的文献求助10
刚刚
泰迪的梦想应助祁厅长采纳,获得10
1秒前
orixero应助可靠的南霜采纳,获得10
1秒前
Hello应助Garfield采纳,获得10
1秒前
1秒前
janarbek应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
从容芮应助科研通管家采纳,获得10
2秒前
从容芮应助科研通管家采纳,获得10
2秒前
从容芮应助科研通管家采纳,获得10
2秒前
不配.应助科研通管家采纳,获得10
2秒前
从容芮应助科研通管家采纳,获得10
2秒前
单纯面包应助科研通管家采纳,获得10
2秒前
不配.应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
姬欢欢完成签到 ,获得积分20
3秒前
4秒前
HH完成签到,获得积分10
6秒前
酷波er应助xia采纳,获得10
6秒前
争取毕业完成签到,获得积分20
7秒前
better7发布了新的文献求助10
7秒前
proteinpurify发布了新的文献求助30
8秒前
小欧发布了新的文献求助10
8秒前
淡定冰颜完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
白222完成签到,获得积分10
9秒前
XSY完成签到,获得积分10
10秒前
Singularity应助十斤芒果采纳,获得10
11秒前
12秒前
13秒前
better7完成签到,获得积分10
13秒前
13秒前
hs是坏蛋完成签到,获得积分10
14秒前
maimu应助HH采纳,获得10
14秒前
脆脆鲨完成签到,获得积分10
16秒前
Akim应助辰星采纳,获得10
16秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142067
求助须知:如何正确求助?哪些是违规求助? 2793006
关于积分的说明 7805015
捐赠科研通 2449359
什么是DOI,文献DOI怎么找? 1303185
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291