Traffic speed forecasting for urban roads: A deep ensemble neural network model

计算机科学 人工神经网络 人工智能 集合预报
作者
Wenqi Lu,Ziwei Yi,Renfei Wu,Yikang Rui,Bin Ran
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier]
卷期号:593: 126988-126988 被引量:8
标识
DOI:10.1016/j.physa.2022.126988
摘要

Real-time and accurate traffic state forecasting of urban roads is of great significance to improve traffic efficiency and optimize travel routes. However, future traffic state forecasting is still a challenging issue as it is influenced by several complicated factors including the dynamic spatio-temporal dependencies. Existing models usually consider the dependencies from the road sections with physical connections and ignore the road sections without physical connections. To this end, this paper proposes a deep ensemble neural network (DENN) model to improve the accuracy of urban traffic state forecasting by forming the road sections with high relevance into a virtual graph. To capture the spatio-temporal characteristics efficiently and simultaneously, the DENN integrates the graph convolutional neural network, bidirectional gated recurrent unit network, and a dense layer with attention mechanism into an end-to-end fashion. Validated on two ground-truth urban traffic speed datasets, the DENN model can well fit the nonlinear fluctuation of urban speed and indicate superior performance than the state-of-the-art benchmark methods in terms of prediction precision and robustness. • The virtual network is established by forming the road sections with high relevance into a virtual graph. • The graph convolutional network (GCN) is introduced to mine spatial features of the traffic flow from virtual graph. • Deep ensemble neural network is built by fusing a GCN, Bi-GRU network, and attention model into an end-to-end fashion. • Real-world urban traffic datasets are used to verify the proposed model in terms of prediction accuracy and stability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助9℃采纳,获得10
刚刚
茁壮成长的兰顺完成签到,获得积分10
1秒前
ctgbg完成签到,获得积分10
1秒前
上官发布了新的文献求助10
1秒前
上官发布了新的文献求助10
1秒前
上官发布了新的文献求助10
1秒前
上官发布了新的文献求助10
1秒前
上官发布了新的文献求助10
1秒前
上官发布了新的文献求助10
2秒前
上官发布了新的文献求助10
2秒前
zt发布了新的文献求助10
2秒前
上官发布了新的文献求助10
2秒前
上官发布了新的文献求助10
2秒前
上官发布了新的文献求助10
2秒前
上官发布了新的文献求助10
2秒前
上官发布了新的文献求助10
2秒前
2秒前
CipherSage应助Y12采纳,获得10
3秒前
无极微光应助en采纳,获得20
3秒前
3秒前
3秒前
zyj完成签到,获得积分10
3秒前
4秒前
简单发布了新的文献求助10
4秒前
芝麻汤圆完成签到,获得积分10
4秒前
阿巴阿巴完成签到,获得积分20
4秒前
4秒前
科研通AI6应助南宫傻姑采纳,获得10
4秒前
5秒前
科研小白完成签到,获得积分10
6秒前
lili完成签到 ,获得积分10
6秒前
科研通AI2S应助流星砸地鼠采纳,获得10
6秒前
SAVP完成签到,获得积分20
6秒前
7秒前
科研通AI6应助He采纳,获得10
8秒前
叮咚发布了新的文献求助10
8秒前
小猫咪完成签到,获得积分10
9秒前
SAVP发布了新的文献求助10
10秒前
10秒前
10秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588119
求助须知:如何正确求助?哪些是违规求助? 4671184
关于积分的说明 14786238
捐赠科研通 4624496
什么是DOI,文献DOI怎么找? 2531592
邀请新用户注册赠送积分活动 1500217
关于科研通互助平台的介绍 1468240