Traffic speed forecasting for urban roads: A deep ensemble neural network model

计算机科学 人工神经网络 人工智能 集合预报
作者
Wenqi Lu,Ziwei Yi,Renfei Wu,Yikang Rui,Bin Ran
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier]
卷期号:593: 126988-126988 被引量:8
标识
DOI:10.1016/j.physa.2022.126988
摘要

Real-time and accurate traffic state forecasting of urban roads is of great significance to improve traffic efficiency and optimize travel routes. However, future traffic state forecasting is still a challenging issue as it is influenced by several complicated factors including the dynamic spatio-temporal dependencies. Existing models usually consider the dependencies from the road sections with physical connections and ignore the road sections without physical connections. To this end, this paper proposes a deep ensemble neural network (DENN) model to improve the accuracy of urban traffic state forecasting by forming the road sections with high relevance into a virtual graph. To capture the spatio-temporal characteristics efficiently and simultaneously, the DENN integrates the graph convolutional neural network, bidirectional gated recurrent unit network, and a dense layer with attention mechanism into an end-to-end fashion. Validated on two ground-truth urban traffic speed datasets, the DENN model can well fit the nonlinear fluctuation of urban speed and indicate superior performance than the state-of-the-art benchmark methods in terms of prediction precision and robustness. • The virtual network is established by forming the road sections with high relevance into a virtual graph. • The graph convolutional network (GCN) is introduced to mine spatial features of the traffic flow from virtual graph. • Deep ensemble neural network is built by fusing a GCN, Bi-GRU network, and attention model into an end-to-end fashion. • Real-world urban traffic datasets are used to verify the proposed model in terms of prediction accuracy and stability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助科研通管家采纳,获得20
1秒前
斯文翠完成签到,获得积分10
1秒前
田様应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
Cunese完成签到,获得积分10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
韩55应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得20
2秒前
guojingjing发布了新的文献求助10
2秒前
lkx发布了新的文献求助10
2秒前
完美世界应助开朗嵩采纳,获得10
2秒前
2秒前
ff完成签到,获得积分10
3秒前
彭于晏应助余香肉丝采纳,获得10
3秒前
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
wanci应助Lisiqi采纳,获得10
5秒前
易只羊完成签到,获得积分10
6秒前
lkx完成签到,获得积分10
6秒前
LINTING完成签到,获得积分20
7秒前
7秒前
s1y完成签到 ,获得积分10
7秒前
咪咪发布了新的文献求助30
7秒前
xxxx完成签到 ,获得积分10
8秒前
haha完成签到,获得积分10
8秒前
纯情的鞋垫完成签到,获得积分10
8秒前
8秒前
mushroomdoor完成签到,获得积分10
8秒前
zm发布了新的文献求助10
9秒前
10秒前
852应助要减肥小夏采纳,获得10
10秒前
wanci应助Bond采纳,获得10
10秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620844
求助须知:如何正确求助?哪些是违规求助? 4705469
关于积分的说明 14932123
捐赠科研通 4763548
什么是DOI,文献DOI怎么找? 2551284
邀请新用户注册赠送积分活动 1513817
关于科研通互助平台的介绍 1474712