清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Traffic speed forecasting for urban roads: A deep ensemble neural network model

计算机科学 人工神经网络 人工智能 集合预报
作者
Wenqi Lu,Ziwei Yi,Renfei Wu,Yikang Rui,Bin Ran
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier]
卷期号:593: 126988-126988 被引量:8
标识
DOI:10.1016/j.physa.2022.126988
摘要

Real-time and accurate traffic state forecasting of urban roads is of great significance to improve traffic efficiency and optimize travel routes. However, future traffic state forecasting is still a challenging issue as it is influenced by several complicated factors including the dynamic spatio-temporal dependencies. Existing models usually consider the dependencies from the road sections with physical connections and ignore the road sections without physical connections. To this end, this paper proposes a deep ensemble neural network (DENN) model to improve the accuracy of urban traffic state forecasting by forming the road sections with high relevance into a virtual graph. To capture the spatio-temporal characteristics efficiently and simultaneously, the DENN integrates the graph convolutional neural network, bidirectional gated recurrent unit network, and a dense layer with attention mechanism into an end-to-end fashion. Validated on two ground-truth urban traffic speed datasets, the DENN model can well fit the nonlinear fluctuation of urban speed and indicate superior performance than the state-of-the-art benchmark methods in terms of prediction precision and robustness. • The virtual network is established by forming the road sections with high relevance into a virtual graph. • The graph convolutional network (GCN) is introduced to mine spatial features of the traffic flow from virtual graph. • Deep ensemble neural network is built by fusing a GCN, Bi-GRU network, and attention model into an end-to-end fashion. • Real-world urban traffic datasets are used to verify the proposed model in terms of prediction accuracy and stability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
CC发布了新的文献求助30
15秒前
19秒前
lesliechan发布了新的文献求助10
25秒前
傅。完成签到 ,获得积分10
30秒前
希望天下0贩的0应助半晴采纳,获得10
38秒前
今后应助半晴采纳,获得10
38秒前
44秒前
56秒前
TT0622发布了新的文献求助10
1分钟前
TT0622完成签到,获得积分10
1分钟前
陶醉的小海豚完成签到,获得积分10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
半晴发布了新的文献求助10
1分钟前
2分钟前
2分钟前
佳佳发布了新的文献求助10
2分钟前
萝卜青菜完成签到 ,获得积分10
2分钟前
无花果应助冷静大米采纳,获得10
2分钟前
tt完成签到,获得积分10
2分钟前
2分钟前
冷静大米发布了新的文献求助10
2分钟前
善学以致用应助冷静大米采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
沉默念瑶完成签到 ,获得积分10
4分钟前
4分钟前
lesliechan完成签到,获得积分10
4分钟前
科研通AI6应助大熊采纳,获得10
4分钟前
大模型应助Rui采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651112
求助须知:如何正确求助?哪些是违规求助? 4783297
关于积分的说明 15053122
捐赠科研通 4809844
什么是DOI,文献DOI怎么找? 2572683
邀请新用户注册赠送积分活动 1528665
关于科研通互助平台的介绍 1487687