Traffic speed forecasting for urban roads: A deep ensemble neural network model

计算机科学 人工神经网络 人工智能 集合预报
作者
Wenqi Lu,Ziwei Yi,Renfei Wu,Yikang Rui,Bin Ran
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier]
卷期号:593: 126988-126988 被引量:8
标识
DOI:10.1016/j.physa.2022.126988
摘要

Real-time and accurate traffic state forecasting of urban roads is of great significance to improve traffic efficiency and optimize travel routes. However, future traffic state forecasting is still a challenging issue as it is influenced by several complicated factors including the dynamic spatio-temporal dependencies. Existing models usually consider the dependencies from the road sections with physical connections and ignore the road sections without physical connections. To this end, this paper proposes a deep ensemble neural network (DENN) model to improve the accuracy of urban traffic state forecasting by forming the road sections with high relevance into a virtual graph. To capture the spatio-temporal characteristics efficiently and simultaneously, the DENN integrates the graph convolutional neural network, bidirectional gated recurrent unit network, and a dense layer with attention mechanism into an end-to-end fashion. Validated on two ground-truth urban traffic speed datasets, the DENN model can well fit the nonlinear fluctuation of urban speed and indicate superior performance than the state-of-the-art benchmark methods in terms of prediction precision and robustness. • The virtual network is established by forming the road sections with high relevance into a virtual graph. • The graph convolutional network (GCN) is introduced to mine spatial features of the traffic flow from virtual graph. • Deep ensemble neural network is built by fusing a GCN, Bi-GRU network, and attention model into an end-to-end fashion. • Real-world urban traffic datasets are used to verify the proposed model in terms of prediction accuracy and stability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大约在冬季完成签到,获得积分10
刚刚
1秒前
yyauthor完成签到,获得积分10
1秒前
2秒前
xuzekun完成签到,获得积分10
2秒前
2秒前
鱼鱼片片发布了新的文献求助10
2秒前
2秒前
ding应助雨碎寒江采纳,获得10
3秒前
sasa发布了新的文献求助10
3秒前
許1111发布了新的文献求助10
4秒前
Alex发布了新的文献求助10
4秒前
harriet chen发布了新的文献求助10
4秒前
阿萨十大发布了新的文献求助10
4秒前
5秒前
华仔应助研友_8QxayZ采纳,获得10
5秒前
6秒前
help3q完成签到,获得积分10
7秒前
llh发布了新的文献求助10
7秒前
赘婿应助暮商零七采纳,获得10
7秒前
8秒前
怡然冷安完成签到,获得积分10
8秒前
8秒前
哈哈哈完成签到,获得积分10
8秒前
秋去去完成签到,获得积分10
9秒前
希望天下0贩的0应助Towne采纳,获得10
9秒前
10秒前
10秒前
李健应助CJN采纳,获得10
10秒前
lily完成签到,获得积分20
11秒前
流云发布了新的文献求助10
11秒前
April完成签到 ,获得积分10
11秒前
清秀橘子完成签到,获得积分10
11秒前
mika完成签到,获得积分10
11秒前
wuliumu完成签到,获得积分10
11秒前
12秒前
12秒前
lizhoukan1完成签到,获得积分10
12秒前
李爱国应助whisper采纳,获得10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667772
求助须知:如何正确求助?哪些是违规求助? 4887765
关于积分的说明 15121847
捐赠科研通 4826643
什么是DOI,文献DOI怎么找? 2584209
邀请新用户注册赠送积分活动 1538157
关于科研通互助平台的介绍 1496386