Traffic speed forecasting for urban roads: A deep ensemble neural network model

计算机科学 人工神经网络 人工智能 集合预报
作者
Wenqi Lu,Ziwei Yi,Renfei Wu,Yikang Rui,Bin Ran
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier]
卷期号:593: 126988-126988 被引量:8
标识
DOI:10.1016/j.physa.2022.126988
摘要

Real-time and accurate traffic state forecasting of urban roads is of great significance to improve traffic efficiency and optimize travel routes. However, future traffic state forecasting is still a challenging issue as it is influenced by several complicated factors including the dynamic spatio-temporal dependencies. Existing models usually consider the dependencies from the road sections with physical connections and ignore the road sections without physical connections. To this end, this paper proposes a deep ensemble neural network (DENN) model to improve the accuracy of urban traffic state forecasting by forming the road sections with high relevance into a virtual graph. To capture the spatio-temporal characteristics efficiently and simultaneously, the DENN integrates the graph convolutional neural network, bidirectional gated recurrent unit network, and a dense layer with attention mechanism into an end-to-end fashion. Validated on two ground-truth urban traffic speed datasets, the DENN model can well fit the nonlinear fluctuation of urban speed and indicate superior performance than the state-of-the-art benchmark methods in terms of prediction precision and robustness. • The virtual network is established by forming the road sections with high relevance into a virtual graph. • The graph convolutional network (GCN) is introduced to mine spatial features of the traffic flow from virtual graph. • Deep ensemble neural network is built by fusing a GCN, Bi-GRU network, and attention model into an end-to-end fashion. • Real-world urban traffic datasets are used to verify the proposed model in terms of prediction accuracy and stability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
程瑞哲完成签到,获得积分10
1秒前
云帆发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
积极雁完成签到,获得积分10
5秒前
11111完成签到,获得积分10
5秒前
chenluAccept发布了新的文献求助10
6秒前
Zhang完成签到,获得积分10
6秒前
6秒前
香蕉觅云应助OMIT采纳,获得10
6秒前
huangyulin2003完成签到,获得积分10
6秒前
CodeCraft应助重要无招采纳,获得10
7秒前
7秒前
无花果应助BINGBING1230采纳,获得10
8秒前
小仙女发布了新的文献求助10
8秒前
9秒前
9秒前
JIA完成签到,获得积分10
9秒前
111发布了新的文献求助200
9秒前
10秒前
臭小子发布了新的文献求助10
10秒前
小雨发布了新的文献求助30
10秒前
yeye发布了新的文献求助60
10秒前
12秒前
13秒前
13秒前
英姑应助GHR采纳,获得10
13秒前
小二郎应助lw采纳,获得10
14秒前
打打应助lw采纳,获得10
14秒前
文艺谷蓝发布了新的文献求助10
14秒前
15秒前
云帆完成签到,获得积分10
15秒前
WeiPaiHWuFXZ发布了新的文献求助10
16秒前
loey完成签到,获得积分10
16秒前
iNk应助彭于晏采纳,获得10
18秒前
exquisite完成签到,获得积分10
18秒前
心灵美凝竹完成签到 ,获得积分10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684488
求助须知:如何正确求助?哪些是违规求助? 5036727
关于积分的说明 15184287
捐赠科研通 4843754
什么是DOI,文献DOI怎么找? 2596869
邀请新用户注册赠送积分活动 1549511
关于科研通互助平台的介绍 1508027