已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Traffic speed forecasting for urban roads: A deep ensemble neural network model

计算机科学 人工神经网络 人工智能 集合预报
作者
Wenqi Lu,Ziwei Yi,Renfei Wu,Yikang Rui,Bin Ran
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier]
卷期号:593: 126988-126988 被引量:8
标识
DOI:10.1016/j.physa.2022.126988
摘要

Real-time and accurate traffic state forecasting of urban roads is of great significance to improve traffic efficiency and optimize travel routes. However, future traffic state forecasting is still a challenging issue as it is influenced by several complicated factors including the dynamic spatio-temporal dependencies. Existing models usually consider the dependencies from the road sections with physical connections and ignore the road sections without physical connections. To this end, this paper proposes a deep ensemble neural network (DENN) model to improve the accuracy of urban traffic state forecasting by forming the road sections with high relevance into a virtual graph. To capture the spatio-temporal characteristics efficiently and simultaneously, the DENN integrates the graph convolutional neural network, bidirectional gated recurrent unit network, and a dense layer with attention mechanism into an end-to-end fashion. Validated on two ground-truth urban traffic speed datasets, the DENN model can well fit the nonlinear fluctuation of urban speed and indicate superior performance than the state-of-the-art benchmark methods in terms of prediction precision and robustness. • The virtual network is established by forming the road sections with high relevance into a virtual graph. • The graph convolutional network (GCN) is introduced to mine spatial features of the traffic flow from virtual graph. • Deep ensemble neural network is built by fusing a GCN, Bi-GRU network, and attention model into an end-to-end fashion. • Real-world urban traffic datasets are used to verify the proposed model in terms of prediction accuracy and stability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yuang完成签到 ,获得积分10
2秒前
周钰波完成签到,获得积分10
2秒前
yc096vps完成签到,获得积分10
5秒前
6秒前
大江哥完成签到,获得积分20
7秒前
youyou完成签到,获得积分10
7秒前
IfItheonlyone完成签到 ,获得积分10
11秒前
dean发布了新的文献求助10
11秒前
阿莳完成签到 ,获得积分10
12秒前
记得早睡完成签到 ,获得积分10
12秒前
14秒前
yy完成签到,获得积分10
16秒前
sky11完成签到,获得积分10
16秒前
柠栀完成签到 ,获得积分10
16秒前
17秒前
instill发布了新的文献求助10
19秒前
斯文败类应助舒适笑容采纳,获得10
20秒前
20秒前
cccxq发布了新的文献求助10
21秒前
科研通AI6应助yy采纳,获得10
21秒前
仰山雪完成签到 ,获得积分0
22秒前
尾状叶完成签到 ,获得积分10
22秒前
xiaofan_www发布了新的文献求助10
23秒前
小吴要努力科研完成签到 ,获得积分10
24秒前
李健的小迷弟应助cccxq采纳,获得10
25秒前
dddnnn完成签到,获得积分10
25秒前
TongKY完成签到 ,获得积分10
26秒前
27秒前
修水县1个科研人完成签到 ,获得积分10
27秒前
猫的淡淡完成签到,获得积分10
28秒前
lzz发布了新的文献求助10
29秒前
31秒前
科目三应助科研通管家采纳,获得200
31秒前
情怀应助科研通管家采纳,获得30
31秒前
Lucas应助科研通管家采纳,获得10
31秒前
adkdad完成签到,获得积分10
36秒前
37秒前
小夜子完成签到 ,获得积分10
40秒前
傻芙芙的完成签到,获得积分10
40秒前
ding应助yy采纳,获得10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650367
求助须知:如何正确求助?哪些是违规求助? 4780685
关于积分的说明 15052075
捐赠科研通 4809320
什么是DOI,文献DOI怎么找? 2572158
邀请新用户注册赠送积分活动 1528332
关于科研通互助平台的介绍 1487174