Traffic speed forecasting for urban roads: A deep ensemble neural network model

计算机科学 人工神经网络 人工智能 集合预报
作者
Wenqi Lu,Ziwei Yi,Renfei Wu,Yikang Rui,Bin Ran
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier]
卷期号:593: 126988-126988 被引量:8
标识
DOI:10.1016/j.physa.2022.126988
摘要

Real-time and accurate traffic state forecasting of urban roads is of great significance to improve traffic efficiency and optimize travel routes. However, future traffic state forecasting is still a challenging issue as it is influenced by several complicated factors including the dynamic spatio-temporal dependencies. Existing models usually consider the dependencies from the road sections with physical connections and ignore the road sections without physical connections. To this end, this paper proposes a deep ensemble neural network (DENN) model to improve the accuracy of urban traffic state forecasting by forming the road sections with high relevance into a virtual graph. To capture the spatio-temporal characteristics efficiently and simultaneously, the DENN integrates the graph convolutional neural network, bidirectional gated recurrent unit network, and a dense layer with attention mechanism into an end-to-end fashion. Validated on two ground-truth urban traffic speed datasets, the DENN model can well fit the nonlinear fluctuation of urban speed and indicate superior performance than the state-of-the-art benchmark methods in terms of prediction precision and robustness. • The virtual network is established by forming the road sections with high relevance into a virtual graph. • The graph convolutional network (GCN) is introduced to mine spatial features of the traffic flow from virtual graph. • Deep ensemble neural network is built by fusing a GCN, Bi-GRU network, and attention model into an end-to-end fashion. • Real-world urban traffic datasets are used to verify the proposed model in terms of prediction accuracy and stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
T_KYG完成签到,获得积分10
刚刚
刚刚
英姑应助努力采纳,获得10
刚刚
ylj发布了新的文献求助10
刚刚
小蘑菇应助1024采纳,获得10
刚刚
浮游应助十八鱼采纳,获得10
3秒前
sdhjad完成签到 ,获得积分10
3秒前
KissesU完成签到 ,获得积分10
3秒前
夕夜完成签到,获得积分10
4秒前
milan001完成签到,获得积分10
4秒前
yi2362完成签到,获得积分10
5秒前
6秒前
AW完成签到,获得积分10
6秒前
7秒前
7秒前
9秒前
清漪完成签到,获得积分10
10秒前
14秒前
ly发布了新的文献求助10
14秒前
爆米花应助虚拟的怡采纳,获得10
15秒前
彭于晏应助EWFDSC采纳,获得10
15秒前
17秒前
希望天下0贩的0应助Jun采纳,获得10
17秒前
17秒前
芋泥啵啵发布了新的文献求助10
18秒前
18秒前
www发布了新的文献求助30
21秒前
ohh发布了新的文献求助50
21秒前
蒋若风完成签到,获得积分10
21秒前
lihua发布了新的文献求助10
22秒前
领导范儿应助现代雪晴采纳,获得10
23秒前
贪玩的新筠完成签到,获得积分10
23秒前
24秒前
YCF发布了新的文献求助10
24秒前
qwe31533完成签到,获得积分10
26秒前
26秒前
香蕉觅云应助ren采纳,获得10
28秒前
研友_8y2G0L完成签到,获得积分10
29秒前
yk完成签到 ,获得积分10
29秒前
浮若安生完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298580
求助须知:如何正确求助?哪些是违规求助? 4447072
关于积分的说明 13841540
捐赠科研通 4332544
什么是DOI,文献DOI怎么找? 2378222
邀请新用户注册赠送积分活动 1373488
关于科研通互助平台的介绍 1339077