Traffic speed forecasting for urban roads: A deep ensemble neural network model

计算机科学 人工神经网络 人工智能 集合预报
作者
Wenqi Lu,Ziwei Yi,Renfei Wu,Yikang Rui,Bin Ran
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier BV]
卷期号:593: 126988-126988 被引量:8
标识
DOI:10.1016/j.physa.2022.126988
摘要

Real-time and accurate traffic state forecasting of urban roads is of great significance to improve traffic efficiency and optimize travel routes. However, future traffic state forecasting is still a challenging issue as it is influenced by several complicated factors including the dynamic spatio-temporal dependencies. Existing models usually consider the dependencies from the road sections with physical connections and ignore the road sections without physical connections. To this end, this paper proposes a deep ensemble neural network (DENN) model to improve the accuracy of urban traffic state forecasting by forming the road sections with high relevance into a virtual graph. To capture the spatio-temporal characteristics efficiently and simultaneously, the DENN integrates the graph convolutional neural network, bidirectional gated recurrent unit network, and a dense layer with attention mechanism into an end-to-end fashion. Validated on two ground-truth urban traffic speed datasets, the DENN model can well fit the nonlinear fluctuation of urban speed and indicate superior performance than the state-of-the-art benchmark methods in terms of prediction precision and robustness. • The virtual network is established by forming the road sections with high relevance into a virtual graph. • The graph convolutional network (GCN) is introduced to mine spatial features of the traffic flow from virtual graph. • Deep ensemble neural network is built by fusing a GCN, Bi-GRU network, and attention model into an end-to-end fashion. • Real-world urban traffic datasets are used to verify the proposed model in terms of prediction accuracy and stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助shinn采纳,获得10
刚刚
刘Liam完成签到,获得积分10
1秒前
2秒前
诺奇完成签到,获得积分10
3秒前
3秒前
3秒前
吃饱晒太阳的柑橘完成签到 ,获得积分10
3秒前
4秒前
郭团团发布了新的文献求助10
4秒前
稚屿完成签到,获得积分10
4秒前
5秒前
标致的书竹完成签到,获得积分10
5秒前
眼睛大莆发布了新的文献求助10
7秒前
9秒前
ranqiang发布了新的文献求助10
9秒前
皮崇知发布了新的文献求助10
9秒前
科研通AI2S应助墨染书香采纳,获得10
9秒前
10秒前
11秒前
在水一方应助魔幻宛白采纳,获得10
11秒前
铭心发布了新的文献求助10
12秒前
大神完成签到,获得积分0
14秒前
搜集达人应助刻苦的宛白采纳,获得30
15秒前
15秒前
ranqiang完成签到,获得积分20
16秒前
我我我完成签到,获得积分10
17秒前
苦瓜炒蛋发布了新的文献求助30
18秒前
19秒前
21秒前
念姬发布了新的文献求助10
21秒前
yu发布了新的文献求助10
21秒前
江城闲鹤发布了新的文献求助200
21秒前
赘婿应助铭心采纳,获得10
21秒前
cathy-w完成签到,获得积分0
22秒前
23秒前
24秒前
24秒前
玉yu完成签到 ,获得积分10
24秒前
24秒前
魔幻宛白发布了新的文献求助10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967131
求助须知:如何正确求助?哪些是违规求助? 3512470
关于积分的说明 11163384
捐赠科研通 3247378
什么是DOI,文献DOI怎么找? 1793799
邀请新用户注册赠送积分活动 874615
科研通“疑难数据库(出版商)”最低求助积分说明 804450