清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Small-Sample Production Prediction of Fractured Wells Using Multitask Learning

过度拟合 计算机科学 机器学习 人工智能 多任务学习 样品(材料) 深度学习 数据挖掘 预处理器 生产(经济) 比例(比率) 数据预处理 任务(项目管理) 人工神经网络 工程类 量子力学 物理 宏观经济学 色谱法 经济 化学 系统工程
作者
Xuechen Li,Xinfang Ma,Fengchao Xiao,Cong Xiao,Fei Wang,Shicheng Zhang
出处
期刊:Spe Journal [Society of Petroleum Engineers]
卷期号:27 (03): 1504-1519 被引量:5
标识
DOI:10.2118/209231-pa
摘要

Summary Domestic and foreign scholars have conducted extensive research on applying machine learning to post-fracture production prediction in recent decades and made great achievements in Bakken, Eagle Ford, Marcellus, and other large-scale oil and gas fields. However, few studies focus on small-sample production prediction of fractured wells, which is urgently needed in small-scale and newly developed reservoirs. In this work, we propose a novel small-sample production prediction framework based on multitask learning (MTL), including multitype data collection, task selection, data preprocessing, model training, and multitask production prediction. As for the trained model, feature extraction is first used through the deep hybrid network (DHN) by fully leveraging available multitype data such as numerical, sequence, and image. Then a multitask module based on the cross-stitch network (CSN) is integrated to automatically determine the information sharing degree of multiple production prediction tasks. In this way, data augmentation and model regularization are indirectly realized to handle the overfitting problem caused by insufficient training data. Finally, the proposed framework is applied to a small-sample field case with 59 fractured horizontal wells in northwest China. The comparison results show that the developed MTL-based model performs better than traditional single-task models in both prediction accuracy and learning efficiency. It provides an accurate and efficient tool for small-sample production prediction and can be used for reference to other small-sample domains in the petroleum industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
27秒前
39秒前
十二完成签到 ,获得积分10
39秒前
44秒前
Airi发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
Ava应助Airi采纳,获得10
1分钟前
Tiger发布了新的文献求助10
1分钟前
Tiger完成签到,获得积分10
1分钟前
2分钟前
imi完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
Raunio完成签到,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
得咎发布了新的文献求助10
3分钟前
3分钟前
研友_8Y26PL完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
oscar完成签到,获得积分10
5分钟前
5分钟前
肆肆完成签到,获得积分10
5分钟前
5分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139610
求助须知:如何正确求助?哪些是违规求助? 2790479
关于积分的说明 7795355
捐赠科研通 2446958
什么是DOI,文献DOI怎么找? 1301526
科研通“疑难数据库(出版商)”最低求助积分说明 626259
版权声明 601176