Small-Sample Production Prediction of Fractured Wells Using Multitask Learning

过度拟合 计算机科学 机器学习 人工智能 多任务学习 样品(材料) 深度学习 数据挖掘 预处理器 生产(经济) 比例(比率) 数据预处理 任务(项目管理) 人工神经网络 工程类 量子力学 物理 宏观经济学 色谱法 经济 化学 系统工程
作者
Xuechen Li,Xinfang Ma,Fengchao Xiao,Cong Xiao,Fei Wang,Shicheng Zhang
出处
期刊:Spe Journal [Society of Petroleum Engineers]
卷期号:27 (03): 1504-1519 被引量:5
标识
DOI:10.2118/209231-pa
摘要

Summary Domestic and foreign scholars have conducted extensive research on applying machine learning to post-fracture production prediction in recent decades and made great achievements in Bakken, Eagle Ford, Marcellus, and other large-scale oil and gas fields. However, few studies focus on small-sample production prediction of fractured wells, which is urgently needed in small-scale and newly developed reservoirs. In this work, we propose a novel small-sample production prediction framework based on multitask learning (MTL), including multitype data collection, task selection, data preprocessing, model training, and multitask production prediction. As for the trained model, feature extraction is first used through the deep hybrid network (DHN) by fully leveraging available multitype data such as numerical, sequence, and image. Then a multitask module based on the cross-stitch network (CSN) is integrated to automatically determine the information sharing degree of multiple production prediction tasks. In this way, data augmentation and model regularization are indirectly realized to handle the overfitting problem caused by insufficient training data. Finally, the proposed framework is applied to a small-sample field case with 59 fractured horizontal wells in northwest China. The comparison results show that the developed MTL-based model performs better than traditional single-task models in both prediction accuracy and learning efficiency. It provides an accurate and efficient tool for small-sample production prediction and can be used for reference to other small-sample domains in the petroleum industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心饼干发布了新的文献求助10
1秒前
1秒前
彭于晏应助清新的Q采纳,获得10
2秒前
3秒前
3秒前
LEMONS应助潇洒飞丹采纳,获得10
3秒前
3秒前
执着的草丛完成签到,获得积分10
4秒前
严逍遥完成签到,获得积分10
5秒前
李健应助刘球球采纳,获得10
6秒前
单纯手机发布了新的文献求助10
6秒前
petrichor完成签到,获得积分10
7秒前
酷酷以松完成签到,获得积分10
7秒前
王子安应助王研采纳,获得10
7秒前
Orange应助sian采纳,获得30
7秒前
8秒前
8秒前
steve发布了新的文献求助10
8秒前
Ge发布了新的文献求助10
9秒前
lee发布了新的文献求助10
9秒前
10秒前
yandongchem完成签到,获得积分10
10秒前
华仔应助chengshenghao采纳,获得10
10秒前
12秒前
momo发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
14秒前
清新的Q发布了新的文献求助10
15秒前
Ge完成签到,获得积分10
15秒前
小二郎应助小王采纳,获得10
15秒前
昵称有敏感词应助不驯采纳,获得10
15秒前
16秒前
司空豁发布了新的文献求助10
16秒前
情怀应助momo采纳,获得10
16秒前
17秒前
oligo完成签到,获得积分10
18秒前
星辰大海应助steve采纳,获得10
19秒前
花里胡哨的花完成签到,获得积分10
20秒前
20秒前
20秒前
ZZL应助CHL5722采纳,获得20
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956369
求助须知:如何正确求助?哪些是违规求助? 3502503
关于积分的说明 11108341
捐赠科研通 3233197
什么是DOI,文献DOI怎么找? 1787199
邀请新用户注册赠送积分活动 870528
科研通“疑难数据库(出版商)”最低求助积分说明 802105