阳极
法拉第效率
材料科学
电解质
硅
阴极
锂(药物)
离子
分析化学(期刊)
电极
化学工程
冶金
化学
物理化学
医学
色谱法
工程类
内分泌学
有机化学
作者
Stephanie Poetke,Felix Hippauf,Anne Baasner,Susanne Dörfler,Holger Althues,Stefan Kaskel
标识
DOI:10.26434/chemrxiv.14096049
摘要
<p>Silicon carbon void structures (Si-C) are attractive anode materials for Lithium-ion batteries to cope with the volume changes of silicon during cycling. In this study, Si-C with varying Si contents (28 ‑ 37 %) are evaluated in all-solid-state batteries (ASSBs) for the first time. The carbon matrix enables enhanced performance and lifetime of the Si-C composites compared to bare silicon nanoparticles in half-cells even at high loadings of up to 7.4 mAh cm<sup>-2</sup>. In full cells with nickel-rich NCM (LiNi<sub>0.9</sub>Co<sub>0.05</sub>Mn<sub>0.05</sub>O<sub>2</sub>, 210 mAh g<sup>-1</sup>), kinetic limitations in the anode lead to a lowered voltage plateau compared to NCM half-cells. The solid electrolyte (Li<sub>6</sub>PS<sub>5</sub>Cl, 3 mS cm<sup>-1</sup>) does not penetrate the Si-C void structure resulting in less side reactions and higher initial coulombic efficiency compared to a liquid electrolyte (72.7 % vs. 31.0 %). Investigating the influence of balancing of full cells using 3-electrode ASSB cells revealed a higher delithiation of the cathode as a result of the higher cut-off voltage of the anode at high n/p ratios. During galvanostatic cycling, full cells with either a low or rather high overbalancing of the anode showed the highest capacity retention of up to 87.7 % after 50 cycles. </p>
科研通智能强力驱动
Strongly Powered by AbleSci AI