Applications of artificial intelligence to aid early detection of dementia: A scoping review on current capabilities and future directions

痴呆 认知功能衰退 医学 认知 疾病 健康档案 梅德林 阶段(地层学) 精神科 病理 医疗保健 古生物学 政治学 法学 经济 生物 经济增长
作者
Renjie Li,Xinyi Wang,Katherine Lawler,Saurabh Garg,Quan Bai,Jane Alty
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:127: 104030-104030 被引量:38
标识
DOI:10.1016/j.jbi.2022.104030
摘要

With populations aging, the number of people with dementia worldwide is expected to triple to 152 million by 2050. Seventy percent of cases are due to Alzheimer's disease (AD) pathology and there is a 10-20 year 'pre-clinical' period before significant cognitive decline occurs. We urgently need, cost effective, objective biomarkers to detect AD, and other dementias, at an early stage. Risk factor modification could prevent 40% of cases and drug trials would have greater chances of success if participants are recruited at an earlier stage. Currently, detection of dementia is largely by pen and paper cognitive tests but these are time consuming and insensitive to the pre-clinical phase. Specialist brain scans and body fluid biomarkers can detect the earliest stages of dementia but are too invasive or expensive for widespread use. With the advancement of technology, Artificial Intelligence (AI) shows promising results in assisting with detection of early-stage dementia. This scoping review aims to summarise the current capabilities of AI-aided digital biomarkers to aid in early detection of dementia, and also discusses potential future research directions.In this scoping review, we used PubMed and IEEE Xplore to identify relevant papers. The resulting records were further filtered to retrieve articles published within five years and written in English. Duplicates were removed, titles and abstracts were screened and full texts were reviewed.After an initial yield of 1,463 records, 1,444 records were screened after removal of duplication. A further 771 records were excluded after screening titles and abstracts, and 496 were excluded after full text review. The final yield was 177 studies. Records were grouped into different artificial intelligence based tests: (a) computerized cognitive tests (b) movement tests (c) speech, conversion, and language tests and (d) computer-assisted interpretation of brain scans.In general, AI techniques enhance the performance of dementia screening tests because more features can be retrieved from a single test, there are less errors due to subjective judgements and AI shifts the automation of dementia screening to a higher level. Compared with traditional cognitive tests, AI-based computerized cognitive tests improve the discrimination sensitivity by around 4% and specificity by around 3%. In terms of speech, conversation and language tests, combining both acoustic features and linguistic features achieve the best result with accuracy around 94%. Deep learning techniques applied in brain scan analysis achieves around 92% accuracy. Movement tests and setting smart environments to capture daily life behaviours are two potential future directions that may help discriminate dementia from normal aging. AI-based smart environments and multi-modal tests are promising future directions to improve detection of dementia in the earliest stages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小鞋发布了新的文献求助10
1秒前
情怀应助木光采纳,获得10
3秒前
半圆亻完成签到 ,获得积分10
4秒前
乐乐应助鲤鱼依白采纳,获得30
4秒前
似水流年完成签到 ,获得积分10
6秒前
小鞋完成签到,获得积分10
6秒前
6秒前
richhu完成签到,获得积分10
8秒前
贾舒涵完成签到,获得积分10
11秒前
大乐完成签到 ,获得积分10
13秒前
巧克力完成签到 ,获得积分10
14秒前
永毅完成签到 ,获得积分10
17秒前
倾卿如玉完成签到 ,获得积分10
17秒前
ranj完成签到,获得积分10
17秒前
kangshuai完成签到,获得积分10
22秒前
xiaowuge完成签到 ,获得积分10
23秒前
kytlnj完成签到 ,获得积分0
23秒前
鲤鱼青槐完成签到,获得积分10
23秒前
jhcraul完成签到,获得积分10
26秒前
mjr发布了新的文献求助10
31秒前
852应助安琪采纳,获得10
31秒前
zx完成签到 ,获得积分10
35秒前
劲爆巧克力完成签到,获得积分10
41秒前
云飞扬完成签到 ,获得积分10
43秒前
44秒前
爱学习的小白完成签到 ,获得积分10
46秒前
小班完成签到,获得积分10
46秒前
小王完成签到 ,获得积分10
49秒前
pp‘s完成签到 ,获得积分10
49秒前
然而。完成签到 ,获得积分10
51秒前
刚子完成签到 ,获得积分10
52秒前
温暖芷文完成签到,获得积分10
53秒前
少侠不是菜鸟完成签到,获得积分10
54秒前
狗儿吖完成签到 ,获得积分10
57秒前
她的城完成签到,获得积分0
58秒前
shrimp5215完成签到,获得积分10
59秒前
柒八染完成签到 ,获得积分10
1分钟前
端庄的如花完成签到 ,获得积分10
1分钟前
doctorw完成签到 ,获得积分10
1分钟前
忧虑的靖巧完成签到 ,获得积分10
1分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142849
求助须知:如何正确求助?哪些是违规求助? 2793778
关于积分的说明 7807209
捐赠科研通 2450039
什么是DOI,文献DOI怎么找? 1303576
科研通“疑难数据库(出版商)”最低求助积分说明 627016
版权声明 601350