已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Applications of artificial intelligence to aid early detection of dementia: A scoping review on current capabilities and future directions

痴呆 认知功能衰退 医学 认知 疾病 健康档案 梅德林 阶段(地层学) 精神科 病理 医疗保健 法学 经济 政治学 古生物学 生物 经济增长
作者
Renjie Li,Xinyi Wang,Katherine Lawler,Saurabh Garg,Quan Bai,Jane Alty
出处
期刊:Journal of Biomedical Informatics [Elsevier BV]
卷期号:127: 104030-104030 被引量:38
标识
DOI:10.1016/j.jbi.2022.104030
摘要

With populations aging, the number of people with dementia worldwide is expected to triple to 152 million by 2050. Seventy percent of cases are due to Alzheimer's disease (AD) pathology and there is a 10-20 year 'pre-clinical' period before significant cognitive decline occurs. We urgently need, cost effective, objective biomarkers to detect AD, and other dementias, at an early stage. Risk factor modification could prevent 40% of cases and drug trials would have greater chances of success if participants are recruited at an earlier stage. Currently, detection of dementia is largely by pen and paper cognitive tests but these are time consuming and insensitive to the pre-clinical phase. Specialist brain scans and body fluid biomarkers can detect the earliest stages of dementia but are too invasive or expensive for widespread use. With the advancement of technology, Artificial Intelligence (AI) shows promising results in assisting with detection of early-stage dementia. This scoping review aims to summarise the current capabilities of AI-aided digital biomarkers to aid in early detection of dementia, and also discusses potential future research directions.In this scoping review, we used PubMed and IEEE Xplore to identify relevant papers. The resulting records were further filtered to retrieve articles published within five years and written in English. Duplicates were removed, titles and abstracts were screened and full texts were reviewed.After an initial yield of 1,463 records, 1,444 records were screened after removal of duplication. A further 771 records were excluded after screening titles and abstracts, and 496 were excluded after full text review. The final yield was 177 studies. Records were grouped into different artificial intelligence based tests: (a) computerized cognitive tests (b) movement tests (c) speech, conversion, and language tests and (d) computer-assisted interpretation of brain scans.In general, AI techniques enhance the performance of dementia screening tests because more features can be retrieved from a single test, there are less errors due to subjective judgements and AI shifts the automation of dementia screening to a higher level. Compared with traditional cognitive tests, AI-based computerized cognitive tests improve the discrimination sensitivity by around 4% and specificity by around 3%. In terms of speech, conversation and language tests, combining both acoustic features and linguistic features achieve the best result with accuracy around 94%. Deep learning techniques applied in brain scan analysis achieves around 92% accuracy. Movement tests and setting smart environments to capture daily life behaviours are two potential future directions that may help discriminate dementia from normal aging. AI-based smart environments and multi-modal tests are promising future directions to improve detection of dementia in the earliest stages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
2秒前
Royal耗子完成签到,获得积分10
4秒前
haobhaobhaob发布了新的文献求助10
5秒前
6秒前
科研通AI5应助豆豆可采纳,获得10
6秒前
7秒前
Royal耗子发布了新的文献求助10
7秒前
慕青应助诺贝尔一直讲采纳,获得30
8秒前
公西凝芙完成签到,获得积分10
8秒前
科研通AI6应助弎夜采纳,获得30
8秒前
langqi发布了新的文献求助10
9秒前
Miya发布了新的文献求助30
9秒前
10秒前
haobhaobhaob完成签到,获得积分10
12秒前
凯蒂发布了新的文献求助10
13秒前
15秒前
哎健身发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
17秒前
momoni完成签到 ,获得积分10
17秒前
优秀的山芙关注了科研通微信公众号
18秒前
19秒前
豆豆可发布了新的文献求助10
21秒前
Olivia发布了新的文献求助10
24秒前
可爱的函函应助langqi采纳,获得10
25秒前
28秒前
29秒前
Crystal完成签到 ,获得积分10
31秒前
Zlq发布了新的文献求助10
31秒前
33秒前
肖易应助幸福大白采纳,获得10
33秒前
zyq完成签到 ,获得积分10
34秒前
故城完成签到 ,获得积分10
34秒前
车灵寒发布了新的文献求助20
39秒前
脑洞疼应助Olivia采纳,获得30
39秒前
40秒前
wab完成签到,获得积分0
40秒前
弎夜发布了新的文献求助30
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610031
求助须知:如何正确求助?哪些是违规求助? 4016179
关于积分的说明 12434575
捐赠科研通 3697585
什么是DOI,文献DOI怎么找? 2038909
邀请新用户注册赠送积分活动 1071843
科研通“疑难数据库(出版商)”最低求助积分说明 955542