Conditional Contrastive Domain Generalization for Fault Diagnosis

计算机科学 一般化 断层(地质) 领域(数学分析) 人工智能 算法 自然语言处理 模式识别(心理学) 数学 地质学 数学分析 地震学
作者
Mohamed Ragab,Zhenghua Chen,Wenyu Zhang,Emadeldeen Eldele,Min Wu,Chee Keong Kwoh,Xiaoli Li
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-12 被引量:65
标识
DOI:10.1109/tim.2022.3154000
摘要

Data-driven fault diagnosis plays a key role in stability and reliability of operations in modern industries. Recently, deep learning has achieved remarkable performance in fault classification tasks. However, in reality, the model can be deployed under highly varying working environments. As a result, the model trained under a certain working environment (i.e., certain distribution) can fail to generalize well on data from different working environments (i.e., different distributions). The naive approach of training a new model for each new working environment would be infeasible in practice. To address this issue, we propose a novel conditional contrastive domain generalization (CCDG) approach for fault diagnosis of rolling machinery, which is able to capture shareable class information and learn environment-independent representation among data collected from different environments (also known as domains). Specifically, our CCDG attempts to maximize the mutual information of similar classes across different domains while minimizing mutual information among different classes, such that it can learn domain-independent class representation that can be transferable to new unseen domains. Our proposed approach significantly outperforms state-of-the-art methods on two real-world fault diagnosis datasets with an average improvement of 7.75% and 2.60%, respectively. The promising performance of our proposed CCDG on new unseen target domain contributes toward more practical data-driven approaches that can work under challenging real-world environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王家范儿。完成签到 ,获得积分10
刚刚
孤独曲奇完成签到,获得积分10
1秒前
77发布了新的文献求助10
1秒前
努力的锂离子完成签到,获得积分10
1秒前
医学生xf发布了新的文献求助20
2秒前
2秒前
3秒前
zzzzz完成签到,获得积分10
4秒前
4秒前
烟花应助已而遂晴采纳,获得10
4秒前
可爱的函函应助Tom采纳,获得10
5秒前
Deer发布了新的文献求助10
5秒前
科研通AI2S应助止于至善采纳,获得10
6秒前
科研通AI2S应助清浅采纳,获得10
6秒前
6秒前
dj完成签到,获得积分20
7秒前
7秒前
Tomice发布了新的文献求助80
7秒前
7秒前
lili发布了新的文献求助10
7秒前
8秒前
9秒前
小新完成签到,获得积分10
9秒前
彭于晏应助零度空间采纳,获得10
11秒前
天天快乐应助小刘采纳,获得10
11秒前
单身的凡雁完成签到,获得积分10
11秒前
陈xxxxxxxxxx发布了新的文献求助10
12秒前
onlywei完成签到,获得积分20
12秒前
娃娃菜妮发布了新的文献求助10
12秒前
千纸鹤发布了新的文献求助10
12秒前
向荣完成签到,获得积分10
12秒前
yizhiGao应助Sunshine采纳,获得10
13秒前
14秒前
1337完成签到,获得积分10
14秒前
Akkord完成签到,获得积分10
14秒前
所所应助休眠的火山采纳,获得10
14秒前
小也发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3217056
求助须知:如何正确求助?哪些是违规求助? 2866278
关于积分的说明 8151168
捐赠科研通 2532940
什么是DOI,文献DOI怎么找? 1365978
科研通“疑难数据库(出版商)”最低求助积分说明 644655
邀请新用户注册赠送积分活动 617611