Prediction of TACE Treatment Response in a Preoperative MRI via Analysis of Integrating Deep Learning and Radiomics Features

接收机工作特性 医学 切断 无线电技术 曲线下面积 曲线下面积 肝细胞癌 经导管动脉化疗栓塞 放射科 核医学 人工智能 内科学 计算机科学 量子力学 药代动力学 物理
作者
Yuchi Tian,Temitope Emmanuel Komolafe,Tao Chen,Bo Zhou,Xiaodong Yang
出处
期刊:Journal of Medical and Biological Engineering [Springer Nature]
卷期号:42 (2): 169-178 被引量:12
标识
DOI:10.1007/s40846-022-00692-w
摘要

PurposeTo evaluate the efficiency of an integrated model on MRI scans of hepatocellular carcinoma (HCC) patients for preoperative prediction of transcatheter arterial chemoembolization (TACE) treatment response.MethodsRadiomics and deep learning features were integrated to build a prediction model for preoperative procedures so as to obtain a fast and accurate prediction of TACE treatment response. This is a retrospective study and the data consists of 71 HCC patients who underwent TACE treatment in a single center. These patients were divided into two groups: progressive disease (PD) response (20 patients) and non-progressive disease (N-PD) response (51 patients). fivefold cross-validation was applied to the data set to validate model performance. A receiver operating characteristic (ROC) curve was used to assess the predictive ability of the model. Quantification of its results was performed by calculating the area under the receiver operating characteristic curve (AUC). The accuracy, recall, specificity, precision and f1_score were also calculated for the cutoff value that maximized the AUC value.ResultsAs assessed by the fivefold cross-validation, the integrated model had the best prediction ability, with a value of AUC 0.947 ± 0.069, an accuracy of 0.893 ± 0.088, f1-score of 0.700 ± 0.245, specificity of 0.700 ± 0.245, precision of 0.700 ± 0.245 and a recall of 0.600 ± 0.279. This was followed by the deep learning-based model with an AUC of 0.867 ± 0.121 and the radiomics-based model with an AUC of 0.848 ± 0.128.ConclusionThe experiment results demonstrate that a feature set that combines radiomics and deep learning features tends to be effective in predicting TACE treatment response as opposed to using only one feature. However, due to the limited amount of data, more data will be needed to verify the effectiveness of this method in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梁子明完成签到,获得积分20
刚刚
Vashon发布了新的文献求助10
刚刚
刚刚
庸俗完成签到,获得积分10
刚刚
ZeKaWa应助leslie采纳,获得10
刚刚
奇迹世界完成签到,获得积分10
1秒前
clark发布了新的文献求助10
1秒前
1秒前
云汐儿完成签到,获得积分10
1秒前
1秒前
WGK发布了新的文献求助10
1秒前
桐桐应助嗯嗯哈哈采纳,获得10
2秒前
中和皇极应助dwarf采纳,获得10
2秒前
科研通AI6应助林瑶采纳,获得10
2秒前
白沙完成签到,获得积分10
3秒前
3秒前
Hhhhh发布了新的文献求助10
4秒前
4秒前
Lucas应助sunshine采纳,获得10
4秒前
平常的飞风完成签到,获得积分10
4秒前
wanci应助坦率的世开采纳,获得10
4秒前
5秒前
斯文败类应助沉默的美女采纳,获得10
5秒前
无花果应助pups采纳,获得10
5秒前
晨晨发布了新的文献求助10
5秒前
6秒前
瓜6完成签到,获得积分10
7秒前
7秒前
威武雪兰完成签到,获得积分10
7秒前
星辰大海应助11采纳,获得10
7秒前
令狐发布了新的文献求助10
7秒前
lpk发布了新的文献求助10
7秒前
依米医意发布了新的文献求助10
8秒前
8秒前
ZZY发布了新的文献求助10
8秒前
一灯大师发布了新的文献求助10
8秒前
yunyun发布了新的文献求助10
8秒前
ZeKaWa应助FLZLC采纳,获得10
9秒前
所所应助李乐乐乐乐采纳,获得10
9秒前
Hhhhh完成签到,获得积分10
9秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619405
求助须知:如何正确求助?哪些是违规求助? 4704160
关于积分的说明 14926129
捐赠科研通 4759826
什么是DOI,文献DOI怎么找? 2550547
邀请新用户注册赠送积分活动 1513336
关于科研通互助平台的介绍 1474401