Prediction of TACE Treatment Response in a Preoperative MRI via Analysis of Integrating Deep Learning and Radiomics Features

接收机工作特性 医学 切断 无线电技术 曲线下面积 曲线下面积 肝细胞癌 经导管动脉化疗栓塞 放射科 核医学 人工智能 内科学 计算机科学 量子力学 药代动力学 物理
作者
Yuchi Tian,Temitope Emmanuel Komolafe,Tao Chen,Bo Zhou,Xiaodong Yang
出处
期刊:Journal of Medical and Biological Engineering [Springer Nature]
卷期号:42 (2): 169-178 被引量:12
标识
DOI:10.1007/s40846-022-00692-w
摘要

PurposeTo evaluate the efficiency of an integrated model on MRI scans of hepatocellular carcinoma (HCC) patients for preoperative prediction of transcatheter arterial chemoembolization (TACE) treatment response.MethodsRadiomics and deep learning features were integrated to build a prediction model for preoperative procedures so as to obtain a fast and accurate prediction of TACE treatment response. This is a retrospective study and the data consists of 71 HCC patients who underwent TACE treatment in a single center. These patients were divided into two groups: progressive disease (PD) response (20 patients) and non-progressive disease (N-PD) response (51 patients). fivefold cross-validation was applied to the data set to validate model performance. A receiver operating characteristic (ROC) curve was used to assess the predictive ability of the model. Quantification of its results was performed by calculating the area under the receiver operating characteristic curve (AUC). The accuracy, recall, specificity, precision and f1_score were also calculated for the cutoff value that maximized the AUC value.ResultsAs assessed by the fivefold cross-validation, the integrated model had the best prediction ability, with a value of AUC 0.947 ± 0.069, an accuracy of 0.893 ± 0.088, f1-score of 0.700 ± 0.245, specificity of 0.700 ± 0.245, precision of 0.700 ± 0.245 and a recall of 0.600 ± 0.279. This was followed by the deep learning-based model with an AUC of 0.867 ± 0.121 and the radiomics-based model with an AUC of 0.848 ± 0.128.ConclusionThe experiment results demonstrate that a feature set that combines radiomics and deep learning features tends to be effective in predicting TACE treatment response as opposed to using only one feature. However, due to the limited amount of data, more data will be needed to verify the effectiveness of this method in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无奈的又晴完成签到,获得积分10
刚刚
nini完成签到,获得积分10
1秒前
有魅力草丛完成签到 ,获得积分20
1秒前
杭紫雪完成签到,获得积分10
2秒前
lanbing802完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
6秒前
有魅力草丛关注了科研通微信公众号
6秒前
wcuzhl完成签到,获得积分10
7秒前
8秒前
Bobi完成签到 ,获得积分10
8秒前
与离完成签到 ,获得积分10
9秒前
yuan完成签到,获得积分10
9秒前
给我打只山鹰吧完成签到,获得积分10
12秒前
biye完成签到 ,获得积分10
12秒前
GQ完成签到,获得积分10
12秒前
开心的若烟完成签到,获得积分10
13秒前
rtqprit完成签到,获得积分10
13秒前
13秒前
zzz完成签到 ,获得积分10
13秒前
纳兰嫣然完成签到,获得积分10
13秒前
赵坤煊完成签到 ,获得积分10
14秒前
14秒前
Ada完成签到 ,获得积分10
15秒前
暴躁的海ge完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
life的半边天完成签到 ,获得积分10
15秒前
18秒前
淳于忆曼完成签到 ,获得积分10
18秒前
Fashioner8351完成签到,获得积分10
19秒前
莫愁完成签到,获得积分10
19秒前
20秒前
甘地发布了新的文献求助10
20秒前
搜集达人应助LY采纳,获得10
21秒前
朱哥永正完成签到,获得积分10
22秒前
道道sy完成签到,获得积分10
25秒前
庄默羽完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助10
26秒前
kevin_kong完成签到,获得积分10
26秒前
甘地完成签到,获得积分10
27秒前
xiaoliu完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773484
求助须知:如何正确求助?哪些是违规求助? 5611745
关于积分的说明 15431379
捐赠科研通 4905949
什么是DOI,文献DOI怎么找? 2639966
邀请新用户注册赠送积分活动 1587841
关于科研通互助平台的介绍 1542900