亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of TACE Treatment Response in a Preoperative MRI via Analysis of Integrating Deep Learning and Radiomics Features

接收机工作特性 医学 切断 无线电技术 曲线下面积 曲线下面积 肝细胞癌 经导管动脉化疗栓塞 放射科 核医学 人工智能 内科学 计算机科学 量子力学 药代动力学 物理
作者
Yuchi Tian,Temitope Emmanuel Komolafe,Tao Chen,Bo Zhou,Xiaodong Yang
出处
期刊:Journal of Medical and Biological Engineering [Springer Nature]
卷期号:42 (2): 169-178 被引量:12
标识
DOI:10.1007/s40846-022-00692-w
摘要

PurposeTo evaluate the efficiency of an integrated model on MRI scans of hepatocellular carcinoma (HCC) patients for preoperative prediction of transcatheter arterial chemoembolization (TACE) treatment response.MethodsRadiomics and deep learning features were integrated to build a prediction model for preoperative procedures so as to obtain a fast and accurate prediction of TACE treatment response. This is a retrospective study and the data consists of 71 HCC patients who underwent TACE treatment in a single center. These patients were divided into two groups: progressive disease (PD) response (20 patients) and non-progressive disease (N-PD) response (51 patients). fivefold cross-validation was applied to the data set to validate model performance. A receiver operating characteristic (ROC) curve was used to assess the predictive ability of the model. Quantification of its results was performed by calculating the area under the receiver operating characteristic curve (AUC). The accuracy, recall, specificity, precision and f1_score were also calculated for the cutoff value that maximized the AUC value.ResultsAs assessed by the fivefold cross-validation, the integrated model had the best prediction ability, with a value of AUC 0.947 ± 0.069, an accuracy of 0.893 ± 0.088, f1-score of 0.700 ± 0.245, specificity of 0.700 ± 0.245, precision of 0.700 ± 0.245 and a recall of 0.600 ± 0.279. This was followed by the deep learning-based model with an AUC of 0.867 ± 0.121 and the radiomics-based model with an AUC of 0.848 ± 0.128.ConclusionThe experiment results demonstrate that a feature set that combines radiomics and deep learning features tends to be effective in predicting TACE treatment response as opposed to using only one feature. However, due to the limited amount of data, more data will be needed to verify the effectiveness of this method in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
6秒前
英姑应助科研通管家采纳,获得10
7秒前
Tobby发布了新的文献求助20
13秒前
时间煮雨我煮鱼完成签到,获得积分10
16秒前
Tobby完成签到,获得积分10
23秒前
Voyager发布了新的文献求助10
54秒前
1分钟前
咸鱼lmye发布了新的文献求助10
1分钟前
1分钟前
咸鱼lmye完成签到 ,获得积分20
1分钟前
wyz完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
ding应助科研通管家采纳,获得10
2分钟前
Voyager发布了新的文献求助50
2分钟前
2分钟前
2分钟前
领导范儿应助老橘子采纳,获得30
3分钟前
3分钟前
堪冥发布了新的文献求助10
3分钟前
Rebeccaiscute完成签到 ,获得积分10
3分钟前
堪冥完成签到,获得积分20
3分钟前
cy0824完成签到 ,获得积分10
3分钟前
Lucas应助沉默的倔驴采纳,获得30
3分钟前
量子星尘发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
科研通AI6.1应助清雨采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
清雨发布了新的文献求助10
4分钟前
陳.发布了新的文献求助10
4分钟前
斯文败类应助陳.采纳,获得10
4分钟前
搜集达人应助陳.采纳,获得10
4分钟前
完美世界应助陳.采纳,获得10
4分钟前
情怀应助陳.采纳,获得10
4分钟前
情怀应助陳.采纳,获得10
4分钟前
科研通AI2S应助陳.采纳,获得10
4分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746872
求助须知:如何正确求助?哪些是违规求助? 5439957
关于积分的说明 15355990
捐赠科研通 4886836
什么是DOI,文献DOI怎么找? 2627476
邀请新用户注册赠送积分活动 1575917
关于科研通互助平台的介绍 1532711