Prediction of TACE Treatment Response in a Preoperative MRI via Analysis of Integrating Deep Learning and Radiomics Features

接收机工作特性 医学 切断 无线电技术 曲线下面积 曲线下面积 肝细胞癌 经导管动脉化疗栓塞 放射科 核医学 人工智能 内科学 计算机科学 量子力学 药代动力学 物理
作者
Yuchi Tian,Temitope Emmanuel Komolafe,Tao Chen,Bo Zhou,Xiaodong Yang
出处
期刊:Journal of Medical and Biological Engineering [Springer Nature]
卷期号:42 (2): 169-178 被引量:12
标识
DOI:10.1007/s40846-022-00692-w
摘要

PurposeTo evaluate the efficiency of an integrated model on MRI scans of hepatocellular carcinoma (HCC) patients for preoperative prediction of transcatheter arterial chemoembolization (TACE) treatment response.MethodsRadiomics and deep learning features were integrated to build a prediction model for preoperative procedures so as to obtain a fast and accurate prediction of TACE treatment response. This is a retrospective study and the data consists of 71 HCC patients who underwent TACE treatment in a single center. These patients were divided into two groups: progressive disease (PD) response (20 patients) and non-progressive disease (N-PD) response (51 patients). fivefold cross-validation was applied to the data set to validate model performance. A receiver operating characteristic (ROC) curve was used to assess the predictive ability of the model. Quantification of its results was performed by calculating the area under the receiver operating characteristic curve (AUC). The accuracy, recall, specificity, precision and f1_score were also calculated for the cutoff value that maximized the AUC value.ResultsAs assessed by the fivefold cross-validation, the integrated model had the best prediction ability, with a value of AUC 0.947 ± 0.069, an accuracy of 0.893 ± 0.088, f1-score of 0.700 ± 0.245, specificity of 0.700 ± 0.245, precision of 0.700 ± 0.245 and a recall of 0.600 ± 0.279. This was followed by the deep learning-based model with an AUC of 0.867 ± 0.121 and the radiomics-based model with an AUC of 0.848 ± 0.128.ConclusionThe experiment results demonstrate that a feature set that combines radiomics and deep learning features tends to be effective in predicting TACE treatment response as opposed to using only one feature. However, due to the limited amount of data, more data will be needed to verify the effectiveness of this method in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
研友_P85D6Z发布了新的文献求助10
2秒前
CipherSage应助enjoy采纳,获得10
2秒前
2秒前
aaaa发布了新的文献求助10
2秒前
很难过完成签到,获得积分10
3秒前
流沙完成签到,获得积分10
3秒前
3秒前
风趣的老太完成签到,获得积分10
4秒前
4秒前
FashionBoy应助害羞的衫采纳,获得10
4秒前
panfan完成签到,获得积分10
5秒前
充电宝应助薛定谔的猫采纳,获得10
5秒前
5秒前
wst完成签到,获得积分10
5秒前
随随风发布了新的文献求助10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
雨下听风完成签到 ,获得积分10
7秒前
123发布了新的文献求助10
7秒前
8秒前
美好凡阳完成签到,获得积分10
8秒前
王王应助zl987采纳,获得10
9秒前
王王应助zl987采纳,获得10
9秒前
王王应助zl987采纳,获得10
9秒前
9秒前
9秒前
王霖发布了新的文献求助10
9秒前
young完成签到,获得积分10
10秒前
大模型应助柚被啊呜一口采纳,获得10
11秒前
美好凡阳发布了新的文献求助10
11秒前
6666应助蝉鸣一夏采纳,获得10
12秒前
zjl发布了新的文献求助10
12秒前
多看点发布了新的文献求助10
12秒前
13秒前
14秒前
刘奕发布了新的文献求助10
14秒前
hhhhhjn发布了新的文献求助10
14秒前
Sansan.发布了新的文献求助10
14秒前
铁头霸霸完成签到 ,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735617
求助须知:如何正确求助?哪些是违规求助? 5361598
关于积分的说明 15330603
捐赠科研通 4879809
什么是DOI,文献DOI怎么找? 2622330
邀请新用户注册赠送积分活动 1571336
关于科研通互助平台的介绍 1528174