Prediction of TACE Treatment Response in a Preoperative MRI via Analysis of Integrating Deep Learning and Radiomics Features

接收机工作特性 医学 切断 无线电技术 曲线下面积 曲线下面积 肝细胞癌 经导管动脉化疗栓塞 放射科 核医学 人工智能 内科学 计算机科学 量子力学 药代动力学 物理
作者
Yuchi Tian,Temitope Emmanuel Komolafe,Tao Chen,Bo Zhou,Xiaodong Yang
出处
期刊:Journal of Medical and Biological Engineering [Springer Nature]
卷期号:42 (2): 169-178 被引量:12
标识
DOI:10.1007/s40846-022-00692-w
摘要

PurposeTo evaluate the efficiency of an integrated model on MRI scans of hepatocellular carcinoma (HCC) patients for preoperative prediction of transcatheter arterial chemoembolization (TACE) treatment response.MethodsRadiomics and deep learning features were integrated to build a prediction model for preoperative procedures so as to obtain a fast and accurate prediction of TACE treatment response. This is a retrospective study and the data consists of 71 HCC patients who underwent TACE treatment in a single center. These patients were divided into two groups: progressive disease (PD) response (20 patients) and non-progressive disease (N-PD) response (51 patients). fivefold cross-validation was applied to the data set to validate model performance. A receiver operating characteristic (ROC) curve was used to assess the predictive ability of the model. Quantification of its results was performed by calculating the area under the receiver operating characteristic curve (AUC). The accuracy, recall, specificity, precision and f1_score were also calculated for the cutoff value that maximized the AUC value.ResultsAs assessed by the fivefold cross-validation, the integrated model had the best prediction ability, with a value of AUC 0.947 ± 0.069, an accuracy of 0.893 ± 0.088, f1-score of 0.700 ± 0.245, specificity of 0.700 ± 0.245, precision of 0.700 ± 0.245 and a recall of 0.600 ± 0.279. This was followed by the deep learning-based model with an AUC of 0.867 ± 0.121 and the radiomics-based model with an AUC of 0.848 ± 0.128.ConclusionThe experiment results demonstrate that a feature set that combines radiomics and deep learning features tends to be effective in predicting TACE treatment response as opposed to using only one feature. However, due to the limited amount of data, more data will be needed to verify the effectiveness of this method in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Time完成签到,获得积分10
1秒前
1秒前
时笙完成签到,获得积分10
1秒前
生椰拿铁不加生椰完成签到 ,获得积分10
2秒前
Ava应助风杨140013_YNNU采纳,获得10
2秒前
动听帆布鞋完成签到,获得积分10
3秒前
Nathan完成签到,获得积分10
3秒前
Two-Capitals发布了新的文献求助10
4秒前
阿六儿完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
瑞仔发布了新的文献求助10
5秒前
luozejun完成签到,获得积分10
5秒前
7秒前
天天快乐应助AAA专业叉车采纳,获得10
8秒前
科目三应助萌酱采纳,获得10
8秒前
华仔应助华海亦采纳,获得10
8秒前
deniroming完成签到,获得积分10
9秒前
xiaoxu完成签到,获得积分10
11秒前
wu完成签到 ,获得积分10
12秒前
13秒前
淡淡友瑶完成签到,获得积分10
14秒前
海孩子完成签到,获得积分10
14秒前
心流完成签到,获得积分10
14秒前
夜话风陵杜完成签到 ,获得积分0
15秒前
15秒前
17秒前
yly123完成签到,获得积分10
17秒前
今天不下雨完成签到,获得积分10
17秒前
无悔初心完成签到,获得积分10
18秒前
wuyanyixie完成签到 ,获得积分10
18秒前
彩色布条发布了新的文献求助10
19秒前
zhangxin完成签到,获得积分10
19秒前
19秒前
正直天佑完成签到,获得积分10
20秒前
jiejie321完成签到,获得积分10
20秒前
学术白银完成签到 ,获得积分10
22秒前
22秒前
Gcy丶完成签到,获得积分10
25秒前
研友_LwlAgn完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600134
求助须知:如何正确求助?哪些是违规求助? 4685840
关于积分的说明 14839918
捐赠科研通 4675103
什么是DOI,文献DOI怎么找? 2538540
邀请新用户注册赠送积分活动 1505668
关于科研通互助平台的介绍 1471124