Prediction of TACE Treatment Response in a Preoperative MRI via Analysis of Integrating Deep Learning and Radiomics Features

接收机工作特性 医学 切断 无线电技术 曲线下面积 曲线下面积 肝细胞癌 经导管动脉化疗栓塞 放射科 核医学 人工智能 内科学 计算机科学 量子力学 药代动力学 物理
作者
Yuchi Tian,Temitope Emmanuel Komolafe,Tao Chen,Bo Zhou,Xiaodong Yang
出处
期刊:Journal of Medical and Biological Engineering [Springer Nature]
卷期号:42 (2): 169-178 被引量:12
标识
DOI:10.1007/s40846-022-00692-w
摘要

PurposeTo evaluate the efficiency of an integrated model on MRI scans of hepatocellular carcinoma (HCC) patients for preoperative prediction of transcatheter arterial chemoembolization (TACE) treatment response.MethodsRadiomics and deep learning features were integrated to build a prediction model for preoperative procedures so as to obtain a fast and accurate prediction of TACE treatment response. This is a retrospective study and the data consists of 71 HCC patients who underwent TACE treatment in a single center. These patients were divided into two groups: progressive disease (PD) response (20 patients) and non-progressive disease (N-PD) response (51 patients). fivefold cross-validation was applied to the data set to validate model performance. A receiver operating characteristic (ROC) curve was used to assess the predictive ability of the model. Quantification of its results was performed by calculating the area under the receiver operating characteristic curve (AUC). The accuracy, recall, specificity, precision and f1_score were also calculated for the cutoff value that maximized the AUC value.ResultsAs assessed by the fivefold cross-validation, the integrated model had the best prediction ability, with a value of AUC 0.947 ± 0.069, an accuracy of 0.893 ± 0.088, f1-score of 0.700 ± 0.245, specificity of 0.700 ± 0.245, precision of 0.700 ± 0.245 and a recall of 0.600 ± 0.279. This was followed by the deep learning-based model with an AUC of 0.867 ± 0.121 and the radiomics-based model with an AUC of 0.848 ± 0.128.ConclusionThe experiment results demonstrate that a feature set that combines radiomics and deep learning features tends to be effective in predicting TACE treatment response as opposed to using only one feature. However, due to the limited amount of data, more data will be needed to verify the effectiveness of this method in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Theprisoners发布了新的文献求助10
刚刚
lili完成签到 ,获得积分10
1秒前
闪电先生发布了新的文献求助10
1秒前
斯文败类应助影子采纳,获得10
1秒前
晓阿路完成签到,获得积分20
2秒前
英姑应助何时能发paper采纳,获得10
3秒前
张志迪发布了新的文献求助10
4秒前
爱啃大虾发布了新的文献求助10
4秒前
zxb关闭了zxb文献求助
5秒前
求助人员发布了新的文献求助10
6秒前
活在当下完成签到,获得积分10
6秒前
Tamarin应助关畅澎采纳,获得10
6秒前
研友_VZG7GZ应助周周采纳,获得10
7秒前
Jasper应助缥缈鞯采纳,获得10
7秒前
栀初完成签到,获得积分10
7秒前
8秒前
cc完成签到 ,获得积分10
8秒前
Angleli完成签到,获得积分10
9秒前
9秒前
真实的裘完成签到,获得积分20
9秒前
半点完成签到,获得积分10
9秒前
10秒前
充电宝应助义气的冰绿采纳,获得10
10秒前
kiska完成签到,获得积分10
10秒前
10秒前
11秒前
爱啃大虾完成签到,获得积分10
12秒前
zxb驳回了nooooorae应助
12秒前
不晚完成签到,获得积分20
12秒前
12秒前
流年应助何苇洁采纳,获得10
12秒前
Nikoni完成签到,获得积分10
12秒前
13秒前
14秒前
Hannah发布了新的文献求助10
14秒前
无极微光应助北冥有鱼采纳,获得20
14秒前
15秒前
易水寒完成签到,获得积分10
15秒前
秋沧海发布了新的文献求助10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525537
求助须知:如何正确求助?哪些是违规求助? 4615754
关于积分的说明 14550242
捐赠科研通 4553783
什么是DOI,文献DOI怎么找? 2495507
邀请新用户注册赠送积分活动 1476091
关于科研通互助平台的介绍 1447818