Maximizing Fe-N exposure by tuning surface composition via twice acid treatment based on an ultrathin hollow nanocarbon structure for highly efficient oxygen reduction reaction

催化作用 试剂 氧还原反应 动力学 介孔材料 比表面积 化学 电化学 燃料电池 阴极 化学工程 材料科学 核化学 纳米技术 电极 物理化学 有机化学 工程类 物理 量子力学
作者
Yanan Zou,Jun Li,Yongchao Yu,Jun Zhang,Qian Fu,Liang Zhang,Qiang Liao,Xun Zhu
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:432: 134362-134362 被引量:17
标识
DOI:10.1016/j.cej.2021.134362
摘要

Fe-N-C oxygen reduction reaction (ORR) catalysts are still limited in poor ORR activity due to low Fe-N exposure and utilization. Here, we report a newly developed Fe-N-C catalyst with Fe-N sites embedded in a micro/mesopore-interconnected, ultrasmall (5–45 nm), ultrathin (1.3 nm), and hollow nanocarbon structure, which is synthesized by a facile, scalable, and template-free method by using cheap and safe reagents. Moreover, the exposure of Fe-N is maximized through twice acid treatment to tune the surface composition of the catalysts. The mass sites density of the optimal catalyst HNP-16 reached 45.0 μmol g−1, much higher than that of untreated HNP-0 (7.4 μmol g−1) and common treated HNP-1 (12.2 μmol g−1). Benefiting from a collective contribution of abundant surface Fe-N active sites and structural advantages, HNP-16 exhibits higher half-wave potential and faster ORR kinetics than commercial Pt/C. Detailed electrochemical analysis revealed the relationships between coordination and ORR activity. The higher content of Fe-N results in faster ORR kinetics while O-related species lead to an undesired 2-electron ORR pathway. When HNP-16 was employed as the cathode catalyst in a membraneless direct formate fuel cell, it delivered an accelerated ORR current response and achieved an unprecedented maximum power density of 37.6 mW cm−2, which was 1.4 times higher than that of Pt/C. The superior performance of HNP-16 is attributed not only to the highly exposed Fe-N sites but also to the rapid mass transfer provided by the favorable hollow structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如此纠结发布了新的文献求助10
刚刚
Inanopig发布了新的文献求助10
刚刚
afrex完成签到,获得积分10
1秒前
南村群童欺我老无力关注了科研通微信公众号
1秒前
菠萝吹雪发布了新的文献求助10
1秒前
平常梦岚完成签到 ,获得积分10
1秒前
gc发布了新的文献求助10
1秒前
2秒前
归尘应助Flexy采纳,获得30
2秒前
zz完成签到,获得积分10
2秒前
Timon完成签到,获得积分10
2秒前
归尘应助元始天尊采纳,获得10
2秒前
3秒前
老王爱学习完成签到,获得积分10
3秒前
3秒前
愤怒的乐松应助郑洋采纳,获得10
3秒前
yangya应助Lxy采纳,获得10
3秒前
h3xxxmax完成签到,获得积分10
4秒前
Chillym完成签到 ,获得积分10
4秒前
hanhan完成签到,获得积分10
4秒前
4秒前
一出生就是美钕应助北彧采纳,获得10
4秒前
哈哈发布了新的文献求助10
4秒前
多情遥完成签到,获得积分10
5秒前
打打应助兜兜揣满糖采纳,获得10
5秒前
Okpooko发布了新的文献求助10
6秒前
6秒前
儒雅一凤完成签到 ,获得积分10
6秒前
谁爱搞科研谁搞完成签到,获得积分20
6秒前
孙一完成签到,获得积分10
7秒前
XunlongJi发布了新的文献求助10
7秒前
幕帆应助iWanted采纳,获得10
7秒前
illusion完成签到,获得积分10
8秒前
czb发布了新的文献求助10
8秒前
8秒前
溜溜完成签到,获得积分10
9秒前
亓大大完成签到,获得积分10
9秒前
研友_VZG7GZ应助玥来玥好采纳,获得10
10秒前
爆米花应助杨欣悦采纳,获得30
10秒前
所所应助幼儿园一姐采纳,获得10
10秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299335
求助须知:如何正确求助?哪些是违规求助? 2934244
关于积分的说明 8468073
捐赠科研通 2607711
什么是DOI,文献DOI怎么找? 1423837
科研通“疑难数据库(出版商)”最低求助积分说明 661724
邀请新用户注册赠送积分活动 645397