Ultralow Light‐Power Consuming Photonic Synapses Based on Ultrasensitive Perovskite/Indium‐Gallium‐Zinc‐Oxide Heterojunction Phototransistors

神经形态工程学 材料科学 光电子学 异质结 光电探测器 钙钛矿(结构) 计算机科学 光探测 纳米技术 光子学 人工神经网络 工程类 人工智能 化学工程
作者
Yong Cao,Xin Sha,Xianwei Bai,Yan Shao,Yuanhong Gao,Yuming Wei,Lingqiang Meng,Ni Zhou,Jin Liu,Bo Li,Xue‐Feng Yu,Jia Li
出处
期刊:Advanced electronic materials [Wiley]
卷期号:8 (3) 被引量:29
标识
DOI:10.1002/aelm.202100902
摘要

Abstract The brain‐inspired neuromorphic parallel computing has become one of the most promising technologies for efficient information processing by overcoming the von Neumann bottleneck of sequential operations. Synapses transmit information among neurons and act as the basic component in neuromorphic computing platforms. Despite the rapid advances in developing artificial synapses, most synaptic devices function electronically and thus numerous merits for photonics such as visual/imaging information processing, less corsstalk, and fast response, have to be compromised. Herein, a light‐stimulated synaptic device (photonic synapses) based on perovskite/In‐Ga‐Zn‐O heterojunction phototransistor is reported. The combination of high‐efficiency light absorber, high‐mobility channel, and heterojunction device architecture leads to efficient photon‐to‐electron conversion and intrinsic high‐gain mechanism for such light‐stimulated synapses. As a result, high performance photonic synapses are obtained with the basic functions of excitatory postsynaptic current (EPSC), paired‐pulse facilitation (PPF), and short‐term memory to long‐term memory conversion (STM‐LTM). Importantly, owing to the ultrasensitive photodetection characteristics, the light power consumption of such photonic artificial synapse can be as low as 2.6 picojoule. This study proposes a simple, efficient, and industry‐compatible device concept providing the photosensitive synapses for photonic neural networks by combining the merits of appropriate materials and device architecture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
奋斗巧曼完成签到,获得积分10
3秒前
科研通AI2S应助bubble采纳,获得10
3秒前
4秒前
小黄包子完成签到,获得积分10
5秒前
Owen应助冯昊采纳,获得10
6秒前
6秒前
甲乙丙丁完成签到 ,获得积分10
7秒前
9秒前
11秒前
11秒前
13秒前
善学以致用应助shiyin采纳,获得10
14秒前
14秒前
15秒前
小兰应助过过过采纳,获得30
15秒前
16秒前
木木发布了新的文献求助10
16秒前
kingwhitewing发布了新的文献求助50
16秒前
CipherSage应助孙姣姣采纳,获得10
19秒前
FG发布了新的文献求助10
19秒前
19秒前
edsenone发布了新的文献求助10
19秒前
fufu完成签到 ,获得积分10
20秒前
20秒前
22秒前
23秒前
传奇3应助科研通管家采纳,获得10
24秒前
共享精神应助科研通管家采纳,获得10
24秒前
共享精神应助科研通管家采纳,获得10
24秒前
ding应助科研通管家采纳,获得10
24秒前
美满忆文应助科研通管家采纳,获得10
24秒前
Lucas应助科研通管家采纳,获得10
24秒前
充电宝应助科研通管家采纳,获得10
24秒前
彭于彦祖应助科研通管家采纳,获得20
24秒前
Ava应助科研通管家采纳,获得10
24秒前
在水一方应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
25秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160924
求助须知:如何正确求助?哪些是违规求助? 2812163
关于积分的说明 7894580
捐赠科研通 2471015
什么是DOI,文献DOI怎么找? 1315853
科研通“疑难数据库(出版商)”最低求助积分说明 631036
版权声明 602068