研磨
GSM演进的增强数据速率
有限元法
材料科学
光学
作者
Bo Pan,Renke Kang,Xiaoguang Guo,Nan Yu,Jiang Guo
摘要
Edge roll-off affects the performance of key parts in precision optics processing. Currently, the evolution mechanism of edge roll-off is not understood clearly, and the existing suppression methods for edge roll-off are not qualified in real applications. To address the problem, this paper presents a new edge roll-off suppression method in double-sided lapping with fixed abrasives. The evolution mechanism of edge roll-off in double-sided lapping is analyzed by utilizing the finite element method (FEM). Three key influential factors affecting edge roll-off, including filling materials and the width of the sacrificial and filling loops, are optimized by FEM analysis and verified by experiments. By applying the optimized parameters, the depth and width of the edge roll-off on thin copper substrates are reduced by about 80% and 55%, respectively.
科研通智能强力驱动
Strongly Powered by AbleSci AI