有机太阳能电池
光活性层
三元运算
材料科学
接受者
纳米尺度
表征(材料科学)
透射电子显微镜
光伏
形态学(生物学)
富勒烯
纳米技术
活动层
化学工程
化学物理
聚合物
化学
图层(电子)
光伏系统
有机化学
复合材料
程序设计语言
生态学
工程类
物理
薄膜晶体管
生物
遗传学
计算机科学
凝聚态物理
作者
Ting Yu,Wanting He,Maziar Jafari,Tuğrul Güner,Pandeng Li,Mohamed Siaj,Ricardo Izquierdo,Baoquan Sun,Gregory C. Welch,Aycan Yurtsever,Dongling Ma
标识
DOI:10.1002/smtd.202100916
摘要
It is highly desired to develop advanced characterization techniques to explore the 3D nanoscale morphology of the complicated blend film of ternary organic solar cells (OSCs). Here, ternary OSCs are constructed by incorporating the nonfullerene acceptor perylenediimide (PDI)-diketopyrrolopyrrole (DPP)-PDI and their morphology is characterized in depth to understand the performance variation. In particular, photoinduced force microscopy (PiFM) coupled with infrared laser spectroscopy is conducted to qualitatively study the distribution of donor and acceptors in the blend film by chemical identification and to quantitatively probe the segmentation of domains and the domain size distribution after PDI-DPP-PDI acceptor incorporation by PiFM imaging and data processing. In addition, the energy-filtered transmission electron microscopy with energy loss spectra is utilized to visualize the nanoscale morphology of ultrathin cross-sections in the configuration of the real ternary device for the first time in the field of photovoltaics. These measurements allow to "view" the surface and cross-sectional morphology and provide strong evidence that the PDI-DPP-PDI acceptor can suppress the aggregation of the fullerene molecules and generate the homogenous morphology with a higher-level of the molecularly mixed phase, which can prevent the charge recombination and stabilize the morphology of photoactive layer.
科研通智能强力驱动
Strongly Powered by AbleSci AI