清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Sintering mechanism of Ag nanoparticle-nanoflake: a molecular dynamics simulation

材料科学 烧结 分子动力学 纳米颗粒 偏斜 复合材料 化学工程 纳米技术 计算化学 液晶 光电子学 工程类 化学
作者
Shizhen Li,Yang Liu,Xianping Chen,Xu Liu,Fenglian Sun,Xuejun Fan,Guoqi Zhang
出处
期刊:Journal of materials research and technology [Elsevier]
卷期号:16: 640-655 被引量:17
标识
DOI:10.1016/j.jmrt.2021.12.029
摘要

This paper studied the behaviors of sintering between Ag nanoparticle (NP) and nanoflake (NF) in the same size by molecular dynamics simulation. Before the sintering simulation, the melting simulation of NF was carried out to calculate the melting points of NFs and investigate the thermostability of NF. The Lindemann index and potential energy showed that the melting points of NF were significantly size-dependent. During the heating process, the sharp corner of NF transformed to the round corner and could bend spontaneously lower than melting points. In sintering simulation, the sintering process of NF-NP showed a metastable stage before equilibrium. Under low sintering temperature (500 K), the degree of plasticity sintering mechanism of NF-NP was more prominent, which generated more defects, such as amorphous atoms, dislocations, and stacking faults, than NP-NP. The sintered products of NF-NP also presented a better neck size and shrinkage than NP-NP in the same size. A new sintering behavior was observed: NF was bent toward the NP during the sintering. The bending curvature of NF increased as the thickness or the length/width decreased. For the NF with the ratio of length/width to thickness of 5:1, bending could further significantly facilitate neck growth. At 700 K, the plasticity mechanism dominated both the sintering processes of NF-NP and NP-NP. And NF-NP showed a larger diffusivity than NP-NP. At last, we investigated the effects of crystal misorientation, and found that a tilted grain boundary generated in the neck. The NF had the trend of rotation to decrease the crystal misorientation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
sweet完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
Criminology34应助科研通管家采纳,获得10
14秒前
Criminology34应助科研通管家采纳,获得10
14秒前
Criminology34应助科研通管家采纳,获得10
14秒前
Criminology34应助科研通管家采纳,获得20
14秒前
和谐的夏岚完成签到 ,获得积分10
52秒前
Paris完成签到 ,获得积分10
53秒前
凤迎雪飘完成签到,获得积分10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
天天快乐应助Developing_human采纳,获得10
2分钟前
2分钟前
liu发布了新的文献求助10
2分钟前
郭强完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
liu完成签到,获得积分10
3分钟前
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科目三应助科研通管家采纳,获得10
4分钟前
4分钟前
博姐37完成签到 ,获得积分10
4分钟前
4分钟前
小小虾完成签到 ,获得积分10
5分钟前
weiwei完成签到,获得积分10
5分钟前
爱思考的小笨笨完成签到,获得积分10
5分钟前
5分钟前
研友_nxw2xL完成签到,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
如歌完成签到,获得积分10
6分钟前
阳光的丹雪完成签到,获得积分10
6分钟前
Criminology34应助Lulu采纳,获得10
6分钟前
6分钟前
多乐多发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664563
求助须知:如何正确求助?哪些是违规求助? 4865032
关于积分的说明 15108031
捐赠科研通 4823202
什么是DOI,文献DOI怎么找? 2582042
邀请新用户注册赠送积分活动 1536153
关于科研通互助平台的介绍 1494545