We report the introduction of distinct optical properties into organotin sulfide clusters by the attachment of extended polycyclic aromatic organic molecules. This was realized by the reactions of [(RNSn)4S6] (RN = CMe2CH2CMeNNH2) with 3-perylenecarbaldehyde and corannulenecarbaldehyde, respectively. The reaction with the first reactant leads to the formation of two products [(RperylSn)3S4][SnCl3] [1a; Rperyl = CMe2CH2CMeNNCH(C20H11)] and [(RperylSn)3S4Cl] (1b). Structural differences between these two compounds are reflected in their different optical absorption and luminescence behavior, yet in both cases, the main emission is red-shifted relative to 3-perylenecarbaldehyde. The second organic molecule affords the compound [(RcorSn)4Sn2S10] [2; Rcor = CMe2CH2CMeNNCH(C20H9)] with intriguing optical properties, including a broad emission with essentially no shift in λmax compared to corannulenecarbaldehyde. All compounds were obtained as single crystals, and their structures were determined by means of single-crystal X-ray diffraction. The optical properties of the highly luminescent compounds were investigated by means of emission and time-resolved photoluminescence spectroscopy measurements.