脱氧核酶
血红素
G-四倍体
生物传感器
分子信标
核酸
化学
组合化学
DNA
肉眼
生物化学
寡核苷酸
血红素
检出限
酶
色谱法
作者
Yun Zhang,Xinao Ma,Jingtian Zhang,Fei‐Xian Luo,Wenshu Wang,Xiaojie Cui
出处
期刊:Molecules
[MDPI AG]
日期:2021-12-03
卷期号:26 (23): 7352-7352
被引量:6
标识
DOI:10.3390/molecules26237352
摘要
G-quadruplexes can bind with hemin to form peroxidase-like DNAzymes that are widely used in the design of biosensors. However, the catalytic activity of G-quadruplex/hemin DNAzyme is relatively low compared with natural peroxidase, which hampers its sensitivity and, thus, its application in the detection of nucleic acids. In this study, we developed a high-sensitivity biosensor targeting norovirus nucleic acids through rationally introducing a dimeric G-quadruplex structure into the DNAzyme. In this strategy, two separate molecular beacons each having a G-quadruplex-forming sequence embedded in the stem structure are brought together through hybridization with a target DNA strand, and thus forms a three-way junction architecture and allows a dimeric G-quadruplex to form, which, upon binding with hemin, has a synergistic enhancement of catalytic activities. This provides a high-sensitivity colorimetric readout by the catalyzing H2O2-mediated oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline -6-sulfonic acid) diammonium salt (ABTS). Up to 10 nM of target DNA can be detected through colorimetric observation with the naked eye using our strategy. Hence, our approach provides a non-amplifying, non-labeling, simple-operating, cost-effective colorimetric biosensing method for target nucleic acids, such as norovirus-conserved sequence detection, and highlights the further implication of higher-order multimerized G-quadruplex structures in the design of high-sensitivity biosensors.
科研通智能强力驱动
Strongly Powered by AbleSci AI