Near-junction microfluidic cooling for GaN HEMT with capped diamond heat spreader

材料科学 微通道 结温 热流密度 热阻 钻石 层流 光电子学 散热片 高电子迁移率晶体管 热撒布器 传热 热的 复合材料 机械 晶体管 热力学 纳米技术 电气工程 工程类 电压 物理
作者
Hang Zhang,Zhixiong Guo
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier]
卷期号:186: 122476-122476 被引量:19
标识
DOI:10.1016/j.ijheatmasstransfer.2021.122476
摘要

With a constant push to shrink size and elevate power density, the heat flux in GaN-based devices is drastically intensified, requiring effective cooling to control junction temperature. This work presents an embedded manifold microchannel cooling (EMMC) arrangement targeted at mitigating junction temperature, in which microchannels are directly etched in the GaN substrate to extract heat generated due to self-heating. The single-phase laminar flow of deionized water through near-junction microchannels has been investigated in a unit-cell mimicking a recently reported GaN power converter with EMMC arrangement. The effects of geometrical parameters of the manifold and microchannel, heat flux and flow rate on the thermal-hydraulic performance of the unit-cell model are thoroughly studied. High heat transfer coefficients in the order of 105 W/(m2·K) associated with the near-junction microfluidic single-phase flow are acquired, which demonstrates the excellent heat extraction capability of EMMC applied to GaN-based devices. The unit-cell model in the prediction of the thermal performance of a large-scale EMMC multifinger GaN device is in good agreement with experiment and capable of providing detailed fluid flow and temperature distributions for design optimization. Furthermore, a capped diamond heat spreader is integrated with the EMMC GaN device to reduce junction thermal spreading resistance. It is shown that high die heat flux in the range 0.86‒3.01 kW/cm2 can be effectively removed for the 10-µm-thick diamond capped GaN-on-SiC EMMC device within a junction temperature range 48‒110°C. This new EMMC arrangement complemented with capped diamond holds promise as an ultimate near-junction cooling solution that facilitates the implementation and development of high-power compact GaN-based devices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助聪明的水母采纳,获得10
刚刚
聪明帅哥完成签到,获得积分10
1秒前
郭琳完成签到,获得积分10
1秒前
上官若男应助zxl采纳,获得10
1秒前
阿良发布了新的文献求助10
1秒前
ling完成签到 ,获得积分10
1秒前
昔时旧日完成签到,获得积分10
1秒前
两张发布了新的文献求助10
1秒前
冯钢发布了新的文献求助10
1秒前
2秒前
无极微光应助戚薇采纳,获得20
2秒前
科目三应助戚薇采纳,获得10
2秒前
科研通AI2S应助guozizi采纳,获得10
3秒前
orixero应助guozizi采纳,获得10
3秒前
普通椰子发布了新的文献求助10
3秒前
qhf发布了新的文献求助10
3秒前
3秒前
3秒前
zz完成签到,获得积分10
3秒前
CodeCraft应助杜兰特采纳,获得20
4秒前
Yuan完成签到 ,获得积分10
4秒前
绝殇雨泪完成签到,获得积分10
4秒前
5秒前
hinna关注了科研通微信公众号
5秒前
5秒前
优秀丹琴发布了新的文献求助10
5秒前
郭琳发布了新的文献求助10
6秒前
6秒前
十月完成签到,获得积分10
6秒前
绿蚁新醅酒呀完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
怕黑的樱完成签到 ,获得积分10
7秒前
strawberry完成签到,获得积分10
7秒前
liang发布了新的文献求助10
7秒前
popo发布了新的文献求助10
8秒前
8秒前
9秒前
将将将将发布了新的文献求助10
9秒前
10秒前
阔达板栗发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613029
求助须知:如何正确求助?哪些是违规求助? 4698296
关于积分的说明 14897022
捐赠科研通 4734847
什么是DOI,文献DOI怎么找? 2546821
邀请新用户注册赠送积分活动 1510838
关于科研通互助平台的介绍 1473494