重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Overview of Configuring Adaptive Activation Functions for Deep Neural Networks - A Comparative Study

激活函数 计算机科学 人工神经网络 人工智能 深度学习 稳健性(进化) 误差函数 过程(计算) 机器学习 算法 生物化学 基因 操作系统 化学
作者
Haoxiang Wang,S. Smys
出处
期刊:Journal of Ubiquitous Computing and Communication Technologies [Inventive Research Organization]
卷期号:3 (1): 10-22 被引量:43
标识
DOI:10.36548/jucct.2021.1.002
摘要

Recently, the deep neural networks (DNN) have demonstrated many performances in the pattern recognition paradigm. The research studies on DNN include depth layer networks, filters, training and testing datasets. Deep neural network is providing many solutions for nonlinear partial differential equations (PDE). This research article comprises of many activation functions for each neuron. Besides, these activation networks are allowing many neurons within the neuron networks. In this network, the multitude of the functions will be selected between node by node to minimize the classification error. This is the reason for selecting the adaptive activation function for deep neural networks. Therefore, the activation functions are adapted with every neuron on the network, which is used to reduce the classification error during the process. This research article discusses the scaling factor for activation function that provides better optimization for the process in the dynamic changes of procedure. The proposed adaptive activation function has better learning capability than fixed activation function in any neural network. The research articles compare the convergence rate, early training function, and accuracy between existing methods. Besides, this research work provides improvements in debt ideas of the learning process of various neural networks. This learning process works and tests the solution available in the domain of various frequency bands. In addition to that, both forward and inverse problems of the parameters in the overriding equation will be identified. The proposed method is very simple architecture and efficiency, robustness, and accuracy will be high when considering the nonlinear function. The overall classification performance will be improved in the resulting networks, which have been trained with common datasets. The proposed work is compared with the recent findings in neuroscience research and proved better performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到,获得积分10
刚刚
1秒前
无花果应助有益采纳,获得10
1秒前
cwp发布了新的文献求助10
1秒前
1秒前
大力秋蝶完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
虚心白开水完成签到,获得积分10
3秒前
拓跋半仙完成签到,获得积分0
3秒前
无问西东发布了新的文献求助10
3秒前
4秒前
慢慢完成签到,获得积分10
4秒前
大只鱼发布了新的文献求助10
5秒前
5秒前
bkagyin应助廿一采纳,获得30
5秒前
painx完成签到,获得积分10
5秒前
归尘发布了新的文献求助10
6秒前
安详凡发布了新的文献求助10
6秒前
zz完成签到,获得积分10
6秒前
Lee完成签到,获得积分10
7秒前
NexusExplorer应助沐阳d采纳,获得10
7秒前
天熙发布了新的文献求助10
7秒前
7秒前
疯帽子完成签到,获得积分10
7秒前
winwey发布了新的文献求助30
7秒前
7秒前
8秒前
王班长爱学习完成签到,获得积分10
8秒前
8秒前
yznfly应助shilong.yang采纳,获得40
9秒前
其奈公何完成签到 ,获得积分10
9秒前
9秒前
9秒前
9秒前
bbzzzha发布了新的文献求助10
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466271
求助须知:如何正确求助?哪些是违规求助? 4570197
关于积分的说明 14323735
捐赠科研通 4496698
什么是DOI,文献DOI怎么找? 2463500
邀请新用户注册赠送积分活动 1452381
关于科研通互助平台的介绍 1427516