Overview of Configuring Adaptive Activation Functions for Deep Neural Networks - A Comparative Study

激活函数 计算机科学 人工神经网络 人工智能 深度学习 稳健性(进化) 误差函数 过程(计算) 机器学习 算法 生物化学 基因 操作系统 化学
作者
Haoxiang Wang,S. Smys
出处
期刊:Journal of Ubiquitous Computing and Communication Technologies [Inventive Research Organization]
卷期号:3 (1): 10-22 被引量:43
标识
DOI:10.36548/jucct.2021.1.002
摘要

Recently, the deep neural networks (DNN) have demonstrated many performances in the pattern recognition paradigm. The research studies on DNN include depth layer networks, filters, training and testing datasets. Deep neural network is providing many solutions for nonlinear partial differential equations (PDE). This research article comprises of many activation functions for each neuron. Besides, these activation networks are allowing many neurons within the neuron networks. In this network, the multitude of the functions will be selected between node by node to minimize the classification error. This is the reason for selecting the adaptive activation function for deep neural networks. Therefore, the activation functions are adapted with every neuron on the network, which is used to reduce the classification error during the process. This research article discusses the scaling factor for activation function that provides better optimization for the process in the dynamic changes of procedure. The proposed adaptive activation function has better learning capability than fixed activation function in any neural network. The research articles compare the convergence rate, early training function, and accuracy between existing methods. Besides, this research work provides improvements in debt ideas of the learning process of various neural networks. This learning process works and tests the solution available in the domain of various frequency bands. In addition to that, both forward and inverse problems of the parameters in the overriding equation will be identified. The proposed method is very simple architecture and efficiency, robustness, and accuracy will be high when considering the nonlinear function. The overall classification performance will be improved in the resulting networks, which have been trained with common datasets. The proposed work is compared with the recent findings in neuroscience research and proved better performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaodusb完成签到 ,获得积分10
刚刚
天天快乐应助温柔柜子采纳,获得10
2秒前
Criminology34应助oleskarabach采纳,获得10
2秒前
Starwalker应助科研同人采纳,获得30
2秒前
量子星尘发布了新的文献求助10
4秒前
入变发布了新的文献求助10
4秒前
6秒前
6秒前
8秒前
8秒前
8秒前
8秒前
8秒前
9秒前
ylkylk关注了科研通微信公众号
9秒前
9秒前
所所应助积极璎采纳,获得10
11秒前
HesperLxy完成签到,获得积分20
11秒前
12秒前
叽里咕噜发布了新的文献求助10
12秒前
Yuan完成签到,获得积分10
13秒前
sinlar发布了新的文献求助10
13秒前
QUPY发布了新的文献求助10
14秒前
14秒前
善学以致用应助健达采纳,获得10
14秒前
15秒前
HesperLxy发布了新的文献求助10
15秒前
15秒前
海丽完成签到,获得积分10
15秒前
科研通AI6.1应助高天雨采纳,获得10
16秒前
16秒前
NexusExplorer应助粗暴的大门采纳,获得10
16秒前
Akim应助二狗采纳,获得10
16秒前
刘立凡发布了新的文献求助10
17秒前
17秒前
祁梦完成签到 ,获得积分10
17秒前
18秒前
方东完成签到,获得积分10
19秒前
小二郎应助杏杏采纳,获得10
19秒前
量子星尘发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785393
求助须知:如何正确求助?哪些是违规求助? 5687580
关于积分的说明 15467396
捐赠科研通 4914484
什么是DOI,文献DOI怎么找? 2645216
邀请新用户注册赠送积分活动 1593054
关于科研通互助平台的介绍 1547382