Overview of Configuring Adaptive Activation Functions for Deep Neural Networks - A Comparative Study

激活函数 计算机科学 人工神经网络 人工智能 深度学习 稳健性(进化) 误差函数 过程(计算) 机器学习 算法 生物化学 基因 操作系统 化学
作者
Haoxiang Wang,S. Smys
出处
期刊:Journal of Ubiquitous Computing and Communication Technologies [Inventive Research Organization]
卷期号:3 (1): 10-22 被引量:43
标识
DOI:10.36548/jucct.2021.1.002
摘要

Recently, the deep neural networks (DNN) have demonstrated many performances in the pattern recognition paradigm. The research studies on DNN include depth layer networks, filters, training and testing datasets. Deep neural network is providing many solutions for nonlinear partial differential equations (PDE). This research article comprises of many activation functions for each neuron. Besides, these activation networks are allowing many neurons within the neuron networks. In this network, the multitude of the functions will be selected between node by node to minimize the classification error. This is the reason for selecting the adaptive activation function for deep neural networks. Therefore, the activation functions are adapted with every neuron on the network, which is used to reduce the classification error during the process. This research article discusses the scaling factor for activation function that provides better optimization for the process in the dynamic changes of procedure. The proposed adaptive activation function has better learning capability than fixed activation function in any neural network. The research articles compare the convergence rate, early training function, and accuracy between existing methods. Besides, this research work provides improvements in debt ideas of the learning process of various neural networks. This learning process works and tests the solution available in the domain of various frequency bands. In addition to that, both forward and inverse problems of the parameters in the overriding equation will be identified. The proposed method is very simple architecture and efficiency, robustness, and accuracy will be high when considering the nonlinear function. The overall classification performance will be improved in the resulting networks, which have been trained with common datasets. The proposed work is compared with the recent findings in neuroscience research and proved better performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三土完成签到 ,获得积分10
3秒前
3秒前
kryptonite完成签到 ,获得积分10
3秒前
浅浅完成签到,获得积分10
5秒前
苹果完成签到,获得积分10
5秒前
杭笑寒完成签到,获得积分10
7秒前
鲁滨逊完成签到 ,获得积分10
7秒前
8秒前
Ava应助量子星尘采纳,获得30
9秒前
9秒前
星辰大海应助量子星尘采纳,获得10
10秒前
辞清完成签到 ,获得积分10
10秒前
wanci应助量子星尘采纳,获得10
11秒前
酷酷涫完成签到 ,获得积分0
11秒前
wanci应助量子星尘采纳,获得10
12秒前
大渡河完成签到 ,获得积分10
12秒前
深情安青应助量子星尘采纳,获得10
12秒前
帅气的藏鸟完成签到,获得积分10
12秒前
酷波er应助量子星尘采纳,获得10
13秒前
wwrjj发布了新的文献求助10
15秒前
ceeray23发布了新的文献求助20
15秒前
janejane完成签到 ,获得积分10
16秒前
饱满的棒棒糖完成签到 ,获得积分10
17秒前
勤劳宛菡完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助30
18秒前
啊哈啊哈额完成签到,获得积分10
19秒前
ZHZ完成签到,获得积分10
19秒前
八八九九九1完成签到,获得积分10
19秒前
没用的三轮完成签到,获得积分10
20秒前
21秒前
优雅的千雁完成签到,获得积分10
23秒前
mayberichard完成签到,获得积分10
24秒前
叶子完成签到 ,获得积分10
25秒前
janejane发布了新的文献求助10
25秒前
dajiejie完成签到 ,获得积分10
26秒前
拼搏一曲完成签到 ,获得积分10
29秒前
她的城完成签到,获得积分0
36秒前
吕小布完成签到,获得积分10
37秒前
Rainielove0215完成签到,获得积分0
38秒前
跳跃的白云完成签到 ,获得积分10
38秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008786
求助须知:如何正确求助?哪些是违规求助? 3548464
关于积分的说明 11298867
捐赠科研通 3283080
什么是DOI,文献DOI怎么找? 1810290
邀请新用户注册赠送积分活动 886000
科研通“疑难数据库(出版商)”最低求助积分说明 811220