Deep Learning Prediction of Ovarian Malignancy at US Compared with O-RADS and Expert Assessment

医学 接收机工作特性 恶性肿瘤 分类 人工智能 双雷达 放射科 机器学习 内科学 癌症 计算机科学 乳腺癌 乳腺摄影术
作者
Hui Chen,Bo-Wen Yang,Le Qian,Yi-Shuang Meng,Xianghui Bai,Xiaowei Hong,Xin He,Meijiao Jiang,Fei Yuan,Qinwen Du,Weiwei Feng
出处
期刊:Radiology [Radiological Society of North America]
卷期号:304 (1): 106-113 被引量:44
标识
DOI:10.1148/radiol.211367
摘要

Background Deep learning (DL) algorithms could improve the classification of ovarian tumors assessed with multimodal US. Purpose To develop DL algorithms for the automated classification of benign versus malignant ovarian tumors assessed with US and to compare algorithm performance to Ovarian-Adnexal Reporting and Data System (O-RADS) and subjective expert assessment for malignancy. Materials and Methods This retrospective study included consecutive women with ovarian tumors undergoing gray scale and color Doppler US from January 2019 to November 2019. Histopathologic analysis was the reference standard. The data set was divided into training (70%), validation (10%), and test (20%) sets. Algorithms modified from residual network (ResNet) with two fusion strategies (feature fusion [hereafter, DLfeature] or decision fusion [hereafter, DLdecision]) were developed. DL prediction of malignancy was compared with O-RADS risk categorization and expert assessment by area under the receiver operating characteristic curve (AUC) analysis in the test set. Results A total of 422 women (mean age, 46.4 years ± 14.8 [SD]) with 304 benign and 118 malignant tumors were included; there were 337 women in the training and validation data set and 85 women in the test data set. DLfeature had an AUC of 0.93 (95% CI: 0.85, 0.97) for classifying malignant from benign ovarian tumors, comparable with O-RADS (AUC, 0.92; 95% CI: 0.85, 0.97; P = .88) and expert assessment (AUC, 0.97; 95% CI: 0.91, 0.99; P = .07), and similar to DLdecision (AUC, 0.90; 95% CI: 0.82, 0.96; P = .29). DLdecision, DLfeature, O-RADS, and expert assessment achieved sensitivities of 92%, 92%, 92%, and 96%, respectively, and specificities of 80%, 85%, 89%, and 87%, respectively, for malignancy. Conclusion Deep learning algorithms developed by using multimodal US images may distinguish malignant from benign ovarian tumors with diagnostic performance comparable to expert subjective and Ovarian-Adnexal Reporting and Data System assessment. © RSNA, 2022 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
美好斓发布了新的文献求助10
1秒前
1秒前
优雅的行云应助红绿蓝采纳,获得10
2秒前
觅书者完成签到,获得积分10
2秒前
小马甲应助曌毓采纳,获得10
5秒前
眼睛大的老虎完成签到,获得积分10
5秒前
NexusExplorer应助zzzz采纳,获得30
6秒前
8秒前
WUWUWU应助小小怪兽采纳,获得10
9秒前
10秒前
10秒前
ding应助123采纳,获得10
13秒前
14秒前
结实雁卉发布了新的文献求助10
14秒前
16秒前
不青山发布了新的文献求助10
16秒前
misstwo发布了新的文献求助10
17秒前
结实雁卉完成签到,获得积分10
20秒前
22秒前
白面包不吃鱼完成签到 ,获得积分10
23秒前
无花果应助迷人幻波采纳,获得10
24秒前
25秒前
25秒前
25秒前
zzzz发布了新的文献求助30
27秒前
YZY完成签到,获得积分10
31秒前
Jasper应助沐紫心采纳,获得10
31秒前
123发布了新的文献求助10
32秒前
xibei发布了新的文献求助10
32秒前
英姑应助江流有声采纳,获得10
35秒前
36秒前
37秒前
39秒前
ferritin发布了新的文献求助10
41秒前
42秒前
体贴花卷发布了新的文献求助10
43秒前
123应助WANG采纳,获得10
43秒前
zanilia应助冷酷的柜门采纳,获得10
43秒前
Orange应助xiaoguo采纳,获得10
44秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307081
求助须知:如何正确求助?哪些是违规求助? 2940878
关于积分的说明 8499176
捐赠科研通 2615063
什么是DOI,文献DOI怎么找? 1428599
科研通“疑难数据库(出版商)”最低求助积分说明 663482
邀请新用户注册赠送积分活动 648318