Transfer learning with fine-tuned deep CNN ResNet50 model for classifying COVID-19 from chest X-ray images

学习迁移 卷积神经网络 人工智能 深度学习 2019年冠状病毒病(COVID-19) 计算机科学 机器学习 灵敏度(控制系统) 领域(数学分析) 射线照相术 F1得分 班级(哲学) 模式识别(心理学) 医学 放射科 病理 数学 疾病 电子工程 传染病(医学专业) 工程类 数学分析
作者
Belal Hossain,S.M. Anas Iqbal,Md. Monirul Islam,Nasim Akhtar,Iqbal H. Sarker
出处
期刊:Informatics in Medicine Unlocked [Elsevier BV]
卷期号:30: 100916-100916 被引量:10
标识
DOI:10.1016/j.imu.2022.100916
摘要

COVID-19 cases are putting pressure on healthcare systems all around the world. Due to the lack of available testing kits, it is impractical for screening every patient with a respiratory ailment using traditional methods (RT-PCR). In addition, the tests have a high turn-around time and low sensitivity. Detecting suspected COVID-19 infections from the chest X-ray might help isolate high-risk people before the RT-PCR test. Most healthcare systems already have X-ray equipment, and because most current X-ray systems have already been computerized, there is no need to transfer the samples. The use of a chest X-ray to prioritize the selection of patients for subsequent RT-PCR testing is the motivation of this work. Transfer learning (TL) with fine-tuning on deep convolutional neural network-based ResNet50 model has been proposed in this work to classify COVID-19 patients from the COVID-19 Radiography Database. Ten distinct pre-trained weights, trained on varieties of large-scale datasets using various approaches such as supervised learning, self-supervised learning, and others, have been utilized in this work. Our proposed iNat2021_Mini_SwAV_1k model, pre-trained on the iNat2021 Mini dataset using the SwAV algorithm, outperforms the other ResNet50 TL models. For COVID instances in the two-class (Covid and Normal) classification, our work achieved 99.17% validation accuracy, 99.95% train accuracy, 99.31% precision, 99.03% sensitivity, and 99.17% F1-score. Some domain-adapted ( ImageNet_ChestX-ray14 ) and in-domain (ChexPert, ChestX-ray14) models looked promising in medical image classification by scoring significantly higher than other models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欧皇发布了新的文献求助30
刚刚
zanedou完成签到,获得积分10
刚刚
YuGe完成签到,获得积分10
刚刚
刚刚
太叔文博完成签到,获得积分0
刚刚
王若琪完成签到 ,获得积分10
刚刚
曾经听云发布了新的文献求助10
刚刚
Z160完成签到,获得积分10
1秒前
1秒前
1秒前
FashionBoy应助ironsilica采纳,获得10
2秒前
2秒前
shea完成签到,获得积分10
2秒前
繁荣的凝荷完成签到 ,获得积分10
2秒前
yatou5651完成签到,获得积分10
2秒前
小怪兽发布了新的文献求助10
2秒前
一台小钢炮完成签到,获得积分10
2秒前
豌豆射手完成签到,获得积分10
2秒前
卡农完成签到,获得积分10
3秒前
Qyyy完成签到,获得积分10
3秒前
奋斗跳跳糖完成签到,获得积分10
3秒前
dayaya完成签到,获得积分10
4秒前
4秒前
坚定的道天完成签到,获得积分10
4秒前
水悟子完成签到,获得积分10
5秒前
哈ha完成签到,获得积分10
5秒前
5秒前
Ethan完成签到,获得积分10
5秒前
6秒前
阿九完成签到,获得积分10
6秒前
erdongsir发布了新的文献求助10
6秒前
6秒前
温暖飞双发布了新的文献求助10
7秒前
atom发布了新的文献求助10
7秒前
shea发布了新的文献求助10
7秒前
CHRIS完成签到,获得积分10
7秒前
32完成签到,获得积分10
8秒前
124完成签到,获得积分10
9秒前
co完成签到,获得积分10
9秒前
挖掘机应助ziger采纳,获得30
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953608
求助须知:如何正确求助?哪些是违规求助? 3499327
关于积分的说明 11094832
捐赠科研通 3229935
什么是DOI,文献DOI怎么找? 1785767
邀请新用户注册赠送积分活动 869499
科研通“疑难数据库(出版商)”最低求助积分说明 801478