Transfer learning with fine-tuned deep CNN ResNet50 model for classifying COVID-19 from chest X-ray images

学习迁移 卷积神经网络 人工智能 深度学习 2019年冠状病毒病(COVID-19) 计算机科学 机器学习 灵敏度(控制系统) 领域(数学分析) 射线照相术 F1得分 班级(哲学) 模式识别(心理学) 医学 放射科 病理 数学 工程类 疾病 传染病(医学专业) 数学分析 电子工程
作者
Belal Hossain,S.M. Anas Iqbal,Md. Monirul Islam,Nasim Akhtar,Iqbal H. Sarker
出处
期刊:Informatics in Medicine Unlocked [Elsevier BV]
卷期号:30: 100916-100916 被引量:10
标识
DOI:10.1016/j.imu.2022.100916
摘要

COVID-19 cases are putting pressure on healthcare systems all around the world. Due to the lack of available testing kits, it is impractical for screening every patient with a respiratory ailment using traditional methods (RT-PCR). In addition, the tests have a high turn-around time and low sensitivity. Detecting suspected COVID-19 infections from the chest X-ray might help isolate high-risk people before the RT-PCR test. Most healthcare systems already have X-ray equipment, and because most current X-ray systems have already been computerized, there is no need to transfer the samples. The use of a chest X-ray to prioritize the selection of patients for subsequent RT-PCR testing is the motivation of this work. Transfer learning (TL) with fine-tuning on deep convolutional neural network-based ResNet50 model has been proposed in this work to classify COVID-19 patients from the COVID-19 Radiography Database. Ten distinct pre-trained weights, trained on varieties of large-scale datasets using various approaches such as supervised learning, self-supervised learning, and others, have been utilized in this work. Our proposed iNat2021_Mini_SwAV_1k model, pre-trained on the iNat2021 Mini dataset using the SwAV algorithm, outperforms the other ResNet50 TL models. For COVID instances in the two-class (Covid and Normal) classification, our work achieved 99.17% validation accuracy, 99.95% train accuracy, 99.31% precision, 99.03% sensitivity, and 99.17% F1-score. Some domain-adapted ( ImageNet_ChestX-ray14 ) and in-domain (ChexPert, ChestX-ray14) models looked promising in medical image classification by scoring significantly higher than other models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5555发布了新的文献求助10
1秒前
skevvecl发布了新的文献求助10
1秒前
赘婿应助科研小白采纳,获得10
2秒前
神勇善斓发布了新的文献求助10
3秒前
3秒前
安详的大雁完成签到,获得积分10
3秒前
爱静静应助lq采纳,获得10
4秒前
5秒前
张璋完成签到,获得积分10
5秒前
5秒前
全圆佑的猫猫完成签到,获得积分10
5秒前
Lucy完成签到,获得积分10
5秒前
5秒前
菜虚鲲完成签到 ,获得积分10
5秒前
6秒前
啦啦完成签到 ,获得积分10
6秒前
兢听发布了新的文献求助10
8秒前
spume完成签到,获得积分10
8秒前
美丽越彬发布了新的文献求助10
8秒前
9秒前
skevvecl完成签到,获得积分10
9秒前
9秒前
在水一方应助ww采纳,获得10
9秒前
10秒前
10秒前
Qeuvilla发布了新的文献求助10
10秒前
spume发布了新的文献求助10
11秒前
冷艳的白竹完成签到,获得积分10
12秒前
13秒前
脑洞疼应助游大达采纳,获得10
13秒前
田様应助Whenhow采纳,获得10
13秒前
蔡旭捆完成签到 ,获得积分10
13秒前
xxy991007发布了新的文献求助10
14秒前
STAR应助科研通管家采纳,获得10
14秒前
Akim应助科研通管家采纳,获得10
14秒前
无花果应助科研通管家采纳,获得10
14秒前
reflux应助科研通管家采纳,获得30
14秒前
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3668063
求助须知:如何正确求助?哪些是违规求助? 3226515
关于积分的说明 9769764
捐赠科研通 2936459
什么是DOI,文献DOI怎么找? 1608572
邀请新用户注册赠送积分活动 759665
科研通“疑难数据库(出版商)”最低求助积分说明 735460