Transfer learning with fine-tuned deep CNN ResNet50 model for classifying COVID-19 from chest X-ray images

学习迁移 卷积神经网络 人工智能 深度学习 2019年冠状病毒病(COVID-19) 计算机科学 机器学习 灵敏度(控制系统) 领域(数学分析) 射线照相术 F1得分 班级(哲学) 模式识别(心理学) 医学 放射科 病理 数学 疾病 电子工程 传染病(医学专业) 工程类 数学分析
作者
Belal Hossain,S.M. Anas Iqbal,Md. Monirul Islam,Nasim Akhtar,Iqbal H. Sarker
出处
期刊:Informatics in Medicine Unlocked [Elsevier]
卷期号:30: 100916-100916 被引量:10
标识
DOI:10.1016/j.imu.2022.100916
摘要

COVID-19 cases are putting pressure on healthcare systems all around the world. Due to the lack of available testing kits, it is impractical for screening every patient with a respiratory ailment using traditional methods (RT-PCR). In addition, the tests have a high turn-around time and low sensitivity. Detecting suspected COVID-19 infections from the chest X-ray might help isolate high-risk people before the RT-PCR test. Most healthcare systems already have X-ray equipment, and because most current X-ray systems have already been computerized, there is no need to transfer the samples. The use of a chest X-ray to prioritize the selection of patients for subsequent RT-PCR testing is the motivation of this work. Transfer learning (TL) with fine-tuning on deep convolutional neural network-based ResNet50 model has been proposed in this work to classify COVID-19 patients from the COVID-19 Radiography Database. Ten distinct pre-trained weights, trained on varieties of large-scale datasets using various approaches such as supervised learning, self-supervised learning, and others, have been utilized in this work. Our proposed iNat2021_Mini_SwAV_1k model, pre-trained on the iNat2021 Mini dataset using the SwAV algorithm, outperforms the other ResNet50 TL models. For COVID instances in the two-class (Covid and Normal) classification, our work achieved 99.17% validation accuracy, 99.95% train accuracy, 99.31% precision, 99.03% sensitivity, and 99.17% F1-score. Some domain-adapted ( ImageNet_ChestX-ray14 ) and in-domain (ChexPert, ChestX-ray14) models looked promising in medical image classification by scoring significantly higher than other models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肖珂完成签到,获得积分10
刚刚
大模型应助可靠安蕾采纳,获得20
刚刚
1秒前
1秒前
yeeming应助M7采纳,获得10
1秒前
英俊的铭应助亮仔采纳,获得10
2秒前
2秒前
asiya发布了新的文献求助10
3秒前
cs发布了新的文献求助10
4秒前
SciGPT应助黄启烽采纳,获得10
4秒前
帅气诗槐发布了新的文献求助10
4秒前
camille发布了新的文献求助10
4秒前
我是老大应助KK采纳,获得10
4秒前
4秒前
袁海燕发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
5秒前
机灵夜云发布了新的文献求助10
5秒前
huhdcid发布了新的文献求助10
6秒前
赘婿应助甜美的青柏采纳,获得10
6秒前
欣慰元蝶发布了新的文献求助10
6秒前
6秒前
6秒前
leomei完成签到,获得积分10
6秒前
czz发布了新的文献求助30
7秒前
听话的亦云完成签到,获得积分10
7秒前
情怀应助猪猪hero采纳,获得10
7秒前
wuyuan完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
Yolanda发布了新的文献求助10
8秒前
12345tty完成签到,获得积分10
8秒前
chenhunhun发布了新的文献求助10
9秒前
Shinchan完成签到,获得积分10
9秒前
9秒前
9秒前
优美芸完成签到,获得积分10
9秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5551588
求助须知:如何正确求助?哪些是违规求助? 4636427
关于积分的说明 14644139
捐赠科研通 4578354
什么是DOI,文献DOI怎么找? 2510716
邀请新用户注册赠送积分活动 1486074
关于科研通互助平台的介绍 1457447