Transfer learning with fine-tuned deep CNN ResNet50 model for classifying COVID-19 from chest X-ray images

学习迁移 卷积神经网络 人工智能 深度学习 2019年冠状病毒病(COVID-19) 计算机科学 机器学习 灵敏度(控制系统) 领域(数学分析) 射线照相术 F1得分 班级(哲学) 模式识别(心理学) 医学 放射科 病理 数学 工程类 疾病 传染病(医学专业) 数学分析 电子工程
作者
Belal Hossain,S.M. Anas Iqbal,Md. Monirul Islam,Nasim Akhtar,Iqbal H. Sarker
出处
期刊:Informatics in Medicine Unlocked [Elsevier]
卷期号:30: 100916-100916 被引量:10
标识
DOI:10.1016/j.imu.2022.100916
摘要

COVID-19 cases are putting pressure on healthcare systems all around the world. Due to the lack of available testing kits, it is impractical for screening every patient with a respiratory ailment using traditional methods (RT-PCR). In addition, the tests have a high turn-around time and low sensitivity. Detecting suspected COVID-19 infections from the chest X-ray might help isolate high-risk people before the RT-PCR test. Most healthcare systems already have X-ray equipment, and because most current X-ray systems have already been computerized, there is no need to transfer the samples. The use of a chest X-ray to prioritize the selection of patients for subsequent RT-PCR testing is the motivation of this work. Transfer learning (TL) with fine-tuning on deep convolutional neural network-based ResNet50 model has been proposed in this work to classify COVID-19 patients from the COVID-19 Radiography Database. Ten distinct pre-trained weights, trained on varieties of large-scale datasets using various approaches such as supervised learning, self-supervised learning, and others, have been utilized in this work. Our proposed iNat2021_Mini_SwAV_1k model, pre-trained on the iNat2021 Mini dataset using the SwAV algorithm, outperforms the other ResNet50 TL models. For COVID instances in the two-class (Covid and Normal) classification, our work achieved 99.17% validation accuracy, 99.95% train accuracy, 99.31% precision, 99.03% sensitivity, and 99.17% F1-score. Some domain-adapted ( ImageNet_ChestX-ray14 ) and in-domain (ChexPert, ChestX-ray14) models looked promising in medical image classification by scoring significantly higher than other models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
myl发布了新的文献求助10
2秒前
11632发布了新的文献求助10
2秒前
3秒前
爱科研的杰杰桀桀完成签到 ,获得积分10
3秒前
希望天下0贩的0应助Catalina采纳,获得10
3秒前
美好斓发布了新的文献求助10
4秒前
hhhhh完成签到,获得积分10
4秒前
5秒前
情怀应助迷宫废墟采纳,获得10
5秒前
Zeming_Pan完成签到,获得积分10
6秒前
6秒前
10秒前
奶冻发布了新的文献求助10
11秒前
小叮当完成签到,获得积分10
11秒前
syh发布了新的文献求助20
13秒前
13秒前
冷傲雨寒完成签到,获得积分10
13秒前
14秒前
领导范儿应助谷贝贝采纳,获得10
14秒前
脑洞疼应助wyl采纳,获得10
15秒前
water完成签到,获得积分10
16秒前
Dr.Liujun发布了新的文献求助10
16秒前
岁月如歌完成签到,获得积分10
17秒前
19秒前
Ava应助交钱上班采纳,获得10
21秒前
Shuo Yang发布了新的文献求助10
23秒前
24秒前
我我我完成签到,获得积分10
24秒前
大气的念薇完成签到 ,获得积分10
25秒前
wyl完成签到,获得积分10
26秒前
28秒前
28秒前
小卢同学完成签到,获得积分10
28秒前
11632发布了新的文献求助10
28秒前
29秒前
Leonard_Canon发布了新的文献求助10
30秒前
谷贝贝发布了新的文献求助10
31秒前
叮当完成签到,获得积分10
31秒前
31秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147980
求助须知:如何正确求助?哪些是违规求助? 2798977
关于积分的说明 7833117
捐赠科研通 2456104
什么是DOI,文献DOI怎么找? 1307127
科研通“疑难数据库(出版商)”最低求助积分说明 628062
版权声明 601620