学习迁移
卷积神经网络
人工智能
深度学习
2019年冠状病毒病(COVID-19)
计算机科学
机器学习
灵敏度(控制系统)
领域(数学分析)
射线照相术
F1得分
班级(哲学)
模式识别(心理学)
医学
放射科
病理
数学
工程类
疾病
传染病(医学专业)
数学分析
电子工程
作者
Belal Hossain,S.M. Anas Iqbal,Md. Monirul Islam,Nasim Akhtar,Iqbal H. Sarker
标识
DOI:10.1016/j.imu.2022.100916
摘要
COVID-19 cases are putting pressure on healthcare systems all around the world. Due to the lack of available testing kits, it is impractical for screening every patient with a respiratory ailment using traditional methods (RT-PCR). In addition, the tests have a high turn-around time and low sensitivity. Detecting suspected COVID-19 infections from the chest X-ray might help isolate high-risk people before the RT-PCR test. Most healthcare systems already have X-ray equipment, and because most current X-ray systems have already been computerized, there is no need to transfer the samples. The use of a chest X-ray to prioritize the selection of patients for subsequent RT-PCR testing is the motivation of this work. Transfer learning (TL) with fine-tuning on deep convolutional neural network-based ResNet50 model has been proposed in this work to classify COVID-19 patients from the COVID-19 Radiography Database. Ten distinct pre-trained weights, trained on varieties of large-scale datasets using various approaches such as supervised learning, self-supervised learning, and others, have been utilized in this work. Our proposed iNat2021_Mini_SwAV_1k model, pre-trained on the iNat2021 Mini dataset using the SwAV algorithm, outperforms the other ResNet50 TL models. For COVID instances in the two-class (Covid and Normal) classification, our work achieved 99.17% validation accuracy, 99.95% train accuracy, 99.31% precision, 99.03% sensitivity, and 99.17% F1-score. Some domain-adapted ( ImageNet_ChestX-ray14 ) and in-domain (ChexPert, ChestX-ray14) models looked promising in medical image classification by scoring significantly higher than other models.
科研通智能强力驱动
Strongly Powered by AbleSci AI