Generalized Extreme Gradient Boosting model for predicting daily global solar radiation for locations without historical data

日照时长 广义加性模型 纬度 经度 气象学 环境科学 高度(三角形) 气候学 地理 数学 统计 降水 大地测量学 地质学 几何学
作者
Rangjian Qiu,Chunwei Liu,Ningbo Cui,Yang Gao,Longan Li,Zongjun Wu,Shouzheng Jiang,Hui Meng
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:258: 115488-115488 被引量:15
标识
DOI:10.1016/j.enconman.2022.115488
摘要

Information on global solar radiation (Rs) is indispensable in many fields. However, reliable measurements of Rs are challenging worldwide because of high costs and technical complexities. Here, temperature- and sunshine-based generalized Extreme Gradient Boosting (XGBoost) models were proposed to estimate daily Rs for locations where historical Rs data are unknown. Four combinations of input variables were assessed. The first two included: (1) maximum, minimum, mean, and diurnal temperature, and extra-terrestrial radiation (Ra); and (2) sunshine duration, maximum possible sunshine duration, and Ra. In the first two inputs, the latter two further included geographical variables, i.e., latitude, longitude, and altitude. The developed models were also compared with temperature- and sunshine-based generalized empirical models. Daily data of Rs, maximum and minimum temperature, and actual sunshine duration during the period of 2007–2016 from 96 radiation stations of China were collected to develop and evaluate the models. The results showed that accuracy of the generalized XGBoost models was improved when geographical variables were further included in various climate zones. The generalized XGBoost model using temperature and geographical data as inputs slightly reduced accuracy compared to the temperature-based local-trained XGBoost model but is still superior to the temperature-based generalized empirical model. Somewhat surprisingly, there was comparable performance between the generalized XGBoost model using sunshine and geographical data as inputs and the local-trained sunshine-based XGBoost model. Therefore, the generalized XGBoost model was highly recommended to estimate daily Rs incorporating sunshine/temperature data and routinely available geographical information for locations where historical data are prior unknown.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今天只做一件事完成签到,获得积分0
刚刚
活爹发布了新的文献求助10
刚刚
KEHUGE完成签到,获得积分10
1秒前
林夏果完成签到,获得积分10
2秒前
小丽完成签到,获得积分10
2秒前
t49779133完成签到,获得积分10
2秒前
英姑应助Puan采纳,获得10
4秒前
潇澜发布了新的文献求助10
4秒前
冰的岛iceland完成签到,获得积分10
4秒前
yurourou完成签到 ,获得积分20
5秒前
long0809发布了新的文献求助10
7秒前
9秒前
pluto应助淡然平灵采纳,获得30
10秒前
sc212gzh关注了科研通微信公众号
11秒前
mouseJ发布了新的文献求助10
11秒前
华仔应助拓跋问儿采纳,获得10
12秒前
12秒前
12秒前
科研通AI2S应助XYX采纳,获得10
14秒前
15秒前
长情半邪发布了新的文献求助10
15秒前
15秒前
页亚亚发布了新的文献求助10
17秒前
17秒前
可乐应助pokexuejiao采纳,获得30
17秒前
19秒前
19秒前
我是老大应助努力努力采纳,获得10
19秒前
20秒前
淡然平灵发布了新的文献求助10
20秒前
21秒前
CCCC完成签到,获得积分10
22秒前
碧蓝板栗发布了新的文献求助20
23秒前
23秒前
MISSJIN关注了科研通微信公众号
24秒前
CCCC发布了新的文献求助10
24秒前
3dyf发布了新的文献求助10
25秒前
长情半邪完成签到,获得积分10
25秒前
tanstar27完成签到 ,获得积分10
26秒前
26秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330025
求助须知:如何正确求助?哪些是违规求助? 2959638
关于积分的说明 8596158
捐赠科研通 2637996
什么是DOI,文献DOI怎么找? 1444096
科研通“疑难数据库(出版商)”最低求助积分说明 668934
邀请新用户注册赠送积分活动 656517