数学
离群值
应用数学
线性回归
缩小
回归
稳健回归
核(代数)
希尔伯特空间
功能(生物学)
趋同(经济学)
线性模型
计量经济学
经验风险最小化
数学优化
统计
数学分析
离散数学
经济
生物
进化生物学
经济增长
标识
DOI:10.1016/j.jco.2022.101696
摘要
In this paper, we consider the robust regression problem associated with Huber loss in the framework of functional linear model and reproducing kernel Hilbert spaces. We propose an Ivanov regularized empirical risk minimization estimation procedure to approximate the slope function of the linear model in the presence of outliers or heavy-tailed noises. By appropriately tuning the scale parameter of the Huber loss, we establish explicit rates of convergence for our estimates in terms of excess prediction risk under mild assumptions. Our study in the paper justifies the efficiency of Huber regression for functional data from a theoretical viewpoint.
科研通智能强力驱动
Strongly Powered by AbleSci AI