Few-Shot Learning with a Strong Teacher

计算机科学 分类器(UML) 人工智能 机器学习 弹丸 一次性 任务(项目管理) 构造(python库) 工程类 机械工程 有机化学 化学 程序设计语言 系统工程
作者
Han-Jia Ye,Lü Ming,De‐Chuan Zhan,Wei‐Lun Chao
出处
期刊:Cornell University - arXiv 被引量:7
标识
DOI:10.48550/arxiv.2107.00197
摘要

Few-shot learning (FSL) aims to generate a classifier using limited labeled examples. Many existing works take the meta-learning approach, constructing a few-shot learner that can learn from few-shot examples to generate a classifier. Typically, the few-shot learner is constructed or meta-trained by sampling multiple few-shot tasks in turn and optimizing the few-shot learner's performance in generating classifiers for those tasks. The performance is measured by how well the resulting classifiers classify the test (i.e., query) examples of those tasks. In this paper, we point out two potential weaknesses of this approach. First, the sampled query examples may not provide sufficient supervision for meta-training the few-shot learner. Second, the effectiveness of meta-learning diminishes sharply with the increasing number of shots. To resolve these issues, we propose a novel meta-training objective for the few-shot learner, which is to encourage the few-shot learner to generate classifiers that perform like strong classifiers. Concretely, we associate each sampled few-shot task with a strong classifier, which is trained with ample labeled examples. The strong classifiers can be seen as the target classifiers that we hope the few-shot learner to generate given few-shot examples, and we use the strong classifiers to supervise the few-shot learner. We present an efficient way to construct the strong classifier, making our proposed objective an easily plug-and-play term to existing meta-learning based FSL methods. We validate our approach, LastShot, in combinations with many representative meta-learning methods. On several benchmark datasets, our approach leads to a notable improvement across a variety of tasks. More importantly, with our approach, meta-learning based FSL methods can outperform non-meta-learning based methods at different numbers of shots.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优雅枫叶完成签到,获得积分20
1秒前
量子星尘发布了新的文献求助10
1秒前
顺心含蕾应助EIS采纳,获得10
3秒前
B站萧亚轩发布了新的文献求助10
4秒前
安元菱完成签到 ,获得积分10
4秒前
4秒前
4秒前
冷静宛海完成签到,获得积分10
5秒前
5秒前
6秒前
fugdu发布了新的文献求助10
6秒前
时舒完成签到 ,获得积分10
6秒前
自信的柠檬完成签到,获得积分20
7秒前
8秒前
善学以致用应助ABC的风格采纳,获得10
9秒前
baron_lin发布了新的文献求助10
9秒前
研友_LN7x6n发布了新的文献求助30
10秒前
852应助风风采纳,获得10
10秒前
Dailalala完成签到,获得积分10
10秒前
11秒前
安静心情发布了新的文献求助10
11秒前
丘比特应助竞鹤采纳,获得10
11秒前
香蕉觅云应助高很帅采纳,获得10
11秒前
12秒前
12秒前
司空天磊发布了新的文献求助10
12秒前
Hydaniel发布了新的文献求助10
12秒前
dd36完成签到,获得积分10
13秒前
昵称11发布了新的文献求助10
15秒前
Owen应助Huguizhou采纳,获得10
15秒前
韩涵完成签到 ,获得积分10
15秒前
充电宝应助2499297293采纳,获得10
15秒前
aich完成签到,获得积分10
15秒前
鲅鱼圈完成签到,获得积分10
16秒前
17秒前
一朵梅花完成签到,获得积分10
17秒前
咕噜仔完成签到,获得积分10
18秒前
汉堡包应助科研通管家采纳,获得10
18秒前
18秒前
Orange应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629991
求助须知:如何正确求助?哪些是违规求助? 4721324
关于积分的说明 14972153
捐赠科研通 4788008
什么是DOI,文献DOI怎么找? 2556688
邀请新用户注册赠送积分活动 1517740
关于科研通互助平台的介绍 1478342