Few-Shot Learning with a Strong Teacher

计算机科学 分类器(UML) 人工智能 机器学习 弹丸 一次性 任务(项目管理) 构造(python库) 工程类 机械工程 有机化学 化学 程序设计语言 系统工程
作者
Han-Jia Ye,Lü Ming,De‐Chuan Zhan,Wei‐Lun Chao
出处
期刊:Cornell University - arXiv 被引量:7
标识
DOI:10.48550/arxiv.2107.00197
摘要

Few-shot learning (FSL) aims to generate a classifier using limited labeled examples. Many existing works take the meta-learning approach, constructing a few-shot learner that can learn from few-shot examples to generate a classifier. Typically, the few-shot learner is constructed or meta-trained by sampling multiple few-shot tasks in turn and optimizing the few-shot learner's performance in generating classifiers for those tasks. The performance is measured by how well the resulting classifiers classify the test (i.e., query) examples of those tasks. In this paper, we point out two potential weaknesses of this approach. First, the sampled query examples may not provide sufficient supervision for meta-training the few-shot learner. Second, the effectiveness of meta-learning diminishes sharply with the increasing number of shots. To resolve these issues, we propose a novel meta-training objective for the few-shot learner, which is to encourage the few-shot learner to generate classifiers that perform like strong classifiers. Concretely, we associate each sampled few-shot task with a strong classifier, which is trained with ample labeled examples. The strong classifiers can be seen as the target classifiers that we hope the few-shot learner to generate given few-shot examples, and we use the strong classifiers to supervise the few-shot learner. We present an efficient way to construct the strong classifier, making our proposed objective an easily plug-and-play term to existing meta-learning based FSL methods. We validate our approach, LastShot, in combinations with many representative meta-learning methods. On several benchmark datasets, our approach leads to a notable improvement across a variety of tasks. More importantly, with our approach, meta-learning based FSL methods can outperform non-meta-learning based methods at different numbers of shots.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
小马甲应助欲扬先抑采纳,获得10
1秒前
2秒前
PetrichorF完成签到 ,获得积分10
2秒前
2秒前
ty完成签到 ,获得积分10
2秒前
大苏打发布了新的文献求助10
2秒前
小羊肖恩发布了新的文献求助10
3秒前
CipherSage应助酷酷的西装采纳,获得10
3秒前
爆米花应助WYN采纳,获得10
3秒前
Q_Q完成签到,获得积分10
4秒前
檀木居然完成签到 ,获得积分10
4秒前
林结衣完成签到,获得积分10
4秒前
4秒前
失眠的芷珍完成签到 ,获得积分10
4秒前
顾矜应助aka拉粑粑大王采纳,获得10
5秒前
今后应助嗯哼采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
乐观寻雪发布了新的文献求助10
5秒前
是多多呀完成签到 ,获得积分10
5秒前
小妍姐姐发布了新的文献求助10
5秒前
杨欢发布了新的文献求助10
6秒前
kong完成签到,获得积分10
6秒前
7秒前
zty568发布了新的文献求助10
7秒前
科研通AI6应助小布丁采纳,获得10
7秒前
心灵美的大地完成签到,获得积分10
7秒前
pigzhu完成签到,获得积分10
8秒前
8秒前
yingying完成签到,获得积分20
8秒前
9秒前
学术屎壳郎完成签到,获得积分10
9秒前
zzkkl发布了新的文献求助10
10秒前
科研通AI6应助pigzhu采纳,获得10
11秒前
欣慰青枫完成签到,获得积分10
11秒前
zheng_chen发布了新的文献求助10
11秒前
DK发布了新的文献求助10
12秒前
科研通AI6应助刘小t采纳,获得10
12秒前
小二郎应助杨欢采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660897
求助须知:如何正确求助?哪些是违规求助? 4836059
关于积分的说明 15092345
捐赠科研通 4819501
什么是DOI,文献DOI怎么找? 2579320
邀请新用户注册赠送积分活动 1533794
关于科研通互助平台的介绍 1492586