Few-Shot Learning with a Strong Teacher

计算机科学 分类器(UML) 人工智能 机器学习 弹丸 一次性 任务(项目管理) 构造(python库) 工程类 机械工程 有机化学 化学 程序设计语言 系统工程
作者
Han-Jia Ye,Lü Ming,De‐Chuan Zhan,Wei‐Lun Chao
出处
期刊:Cornell University - arXiv 被引量:7
标识
DOI:10.48550/arxiv.2107.00197
摘要

Few-shot learning (FSL) aims to generate a classifier using limited labeled examples. Many existing works take the meta-learning approach, constructing a few-shot learner that can learn from few-shot examples to generate a classifier. Typically, the few-shot learner is constructed or meta-trained by sampling multiple few-shot tasks in turn and optimizing the few-shot learner's performance in generating classifiers for those tasks. The performance is measured by how well the resulting classifiers classify the test (i.e., query) examples of those tasks. In this paper, we point out two potential weaknesses of this approach. First, the sampled query examples may not provide sufficient supervision for meta-training the few-shot learner. Second, the effectiveness of meta-learning diminishes sharply with the increasing number of shots. To resolve these issues, we propose a novel meta-training objective for the few-shot learner, which is to encourage the few-shot learner to generate classifiers that perform like strong classifiers. Concretely, we associate each sampled few-shot task with a strong classifier, which is trained with ample labeled examples. The strong classifiers can be seen as the target classifiers that we hope the few-shot learner to generate given few-shot examples, and we use the strong classifiers to supervise the few-shot learner. We present an efficient way to construct the strong classifier, making our proposed objective an easily plug-and-play term to existing meta-learning based FSL methods. We validate our approach, LastShot, in combinations with many representative meta-learning methods. On several benchmark datasets, our approach leads to a notable improvement across a variety of tasks. More importantly, with our approach, meta-learning based FSL methods can outperform non-meta-learning based methods at different numbers of shots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iNk应助沐风采纳,获得10
刚刚
tuanheqi应助廿廿采纳,获得20
刚刚
hanzheng发布了新的文献求助10
1秒前
福西西发布了新的文献求助10
1秒前
JQB完成签到,获得积分10
1秒前
rachel03发布了新的文献求助10
1秒前
2秒前
飞飞完成签到,获得积分10
2秒前
3秒前
nsk发布了新的文献求助10
4秒前
任博文完成签到 ,获得积分10
4秒前
5秒前
5秒前
darklyfrank完成签到 ,获得积分10
5秒前
5秒前
mingyu完成签到,获得积分10
6秒前
Zzzhu发布了新的文献求助20
6秒前
QQ完成签到,获得积分10
6秒前
6秒前
充电宝应助wangyue采纳,获得10
7秒前
秀丽的正豪完成签到,获得积分10
8秒前
8秒前
研友_ZGDEG8完成签到,获得积分10
8秒前
小李之家发布了新的文献求助10
9秒前
无奈的炳发布了新的文献求助10
9秒前
9秒前
果果完成签到,获得积分10
9秒前
10秒前
搜集达人应助立军采纳,获得10
10秒前
小木虫369完成签到,获得积分10
11秒前
qise完成签到,获得积分10
12秒前
嘻哈学习完成签到,获得积分10
13秒前
汤姆发布了新的文献求助10
13秒前
feb发布了新的文献求助10
14秒前
研友_ZGDEG8发布了新的文献求助10
14秒前
高高秋发布了新的文献求助10
15秒前
坏坏的小鱼鱼完成签到,获得积分10
15秒前
15秒前
ridder完成签到,获得积分20
15秒前
科研通AI2S应助小李之家采纳,获得10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143897
求助须知:如何正确求助?哪些是违规求助? 2795508
关于积分的说明 7815487
捐赠科研通 2451567
什么是DOI,文献DOI怎么找? 1304518
科研通“疑难数据库(出版商)”最低求助积分说明 627251
版权声明 601419